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Abstract— This technical report is about the architecture and
integration of very small commercial UAVs (< 40 cm diagonal)
in indoor Search and Rescue missions. One UAV is manually
controlled by only one single human operator delivering live
video streams and image series for later 3D scene modelling
and inspection. In order to assist the operator who has to
simultaneously observe the environment and navigate through
it we use multiple deep neural networks to provide guided
autonomy, automatic object detection and classification and
local 3D scene modelling. Our methods help to reduce the
cognitive load of the operator. We describe a framework for
quick integration of new methods from the field of Deep
Learning, enabling for rapid evaluation in real scenarios,
including the interaction of methods.

Index Terms— Search and Rescue Robots, Unmanned Aerial
Vehicles, Artificial Intelligence, Deep Learning, Autonomous
Robots

I. INTRODUCTION

On August 24th, 2016 an earthquake of magnitude 6.2 hit
central Italy [1]. One week later, on Thursday, September
1st a team of the EU project TRADR deployed three UAVs
in Amatrice, Italy, to assist in the post-earthquake response.
The team was asked to provide textured 3D models of
two churches, San Francesco and Sant’Agostino, both in
a state of partial collapse. The models were used to plan
the building support, to prevent further destruction, and to
preserve the national heritage monuments from the 14th
century, as well as to protect the rescuers [2]. To our
knowledge, it was the first time that the outcome of a
mission depended on the UAVs capabilities to enter partially
collapsed buildings through broken windows or holes in
roofs. The buildings were entered successfully by a DJI
Phantom 3 (∼ 1.3 kg, ∼ 60 cm diagonal, 4 rotors). The two
other UAVs (AscTec Falcon 8, ∼ 120 cm, 8 rotors) were too
large to enter the buildings but provided an overview from
outside the churches. From these missions we have learned
several lessons:

1) UAVs are needed for USAR missions, in which dam-
aged buildings are to be entered, which are inaccessible
for humans or ground robots. In the above scenarios
UAVs provide a quick scene overview given a live
video stream from their onboard cameras. With series
of Images made from inside the buildings a 3D model
was later provided for further mission planning. No
humans were put in danger.
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Fig. 1. Example of indoor task. A small UAV entered a building and
detects an accident. The UAV is semi autonomous and remote controlled
by an operator and a neural network agent (assisted autonomy). The camera
images are sent to the outside operator and the AI agent. The images are
processed outside and control commands are sent back to the UAV. A stable
radio link connection is necessary.

2) We had great success with small UAVs mainly used
as mobile sensor platform (with the camera being the
most important one) with otherwise limited compu-
tation capabilities. It was a bit lucky, however, that
we were indeed able to enter the buildings, since it
is totally possible that the next mission requires even
smaller UAVs. As such the size of applied UAVs must
shrink.

3) We have experienced first-hand that the cognitive load
in teleoperation mode is very taxing for a single UAV
operator as he needs to focus on the navigation while
he simultaneously must keep track of the environment
with its dangers. This is even more imminent in
stressful missions. For this reason these tasks are often
split to a pair of individuals, but even then, they remain
difficult to handle [3], [4]. As such, assistive techniques
are needed, e.g from the field of AI.

Nowadays UAVs are available on the free market which
are cheaper and smaller than the DJI Phantom 3 (< 0.5 kg,
< 30 cm vs. ∼ 1.3 kg, ∼ 60 cm) while still being comparable
in terms of functionality (see section IV for details). These
UAVs provide a live video stream and Images of high
resolution, but, in order to save weight and power, active dis-
tance measuring sensors aren’t available. Compared to most
outdoor scenarios the exploration and navigation in indoor
environments quickly becomes more demanding, because
of the absence of GNSS for localisation and a potentially
huge number of obstacles which often are in close proximity
to the UAV. Things get even harder when no 3D sensors
are available, since any localisation then must rely on pho-



Fig. 2. Architecture for small UAVs in SAR missions. It consists of the small UAVs, a remote operator station and several computing nodes for the
AI algorithms. The camera images from the drone are distributed to the AI computing nodes and the detected objects, point clouds, maps and control
commands are sent back to the operator and the UAV. This approach needs a connection from the operator to the UAV.

togrammetric methods which are computationally expensive
while often delivering only sparse structural information of
the environment. In fact, the autonomous control of a mobile
robot in every indoor scene under all circumstances lies
beyond the current state of the art. However, when controlled
in teleoperation mode, a human operator has to estimate
depth and distances in 3D by himself, which is a tedious
task with a high cognitive load. Solving complex tasks with
Computer Vision, given limited resources for computation,
has become a typically use case for Deep Learning. Being
one of the most active research topics of robotics many
methods from deep learning are still experimental and the
current state of the art can change quickly. As a side effect,
most methods are far from beeing optimized for target
platforms. In the context of indoor rescue robotics there is
only little experience in the application of methods based on
Deep Learning and what kind of problems can and should
be solved. As such we assume that we benefit from a system
to quickly test hypotheses on live data from one or multiple
UAVs. Considering the fast progress in drone technology and
the uncertainty about the concrete model or the number of
models to use while simultaneously testing and integrating
a potential multitude of computationally demanding neural
nets, we think on a system with the following properties:

1) There is a method to uniformly register and command a
multitude of small and cheap, commercial off-the-shelf
UAVs in one system, considering that different vendors
offer different SDKs and Interfaces. Flying indoor, we
refer to small UAVs equipped with cameras.

2) So far, UAVs should be used in a similar fashion
like in Armatrice: One human operator controls one
UAV which provides a live video stream and series
of Images from the indoor environment. AI based

methods might help but not fully substitute the operator
for the control task under all circumstances.

3) In order to consider the latest state of the art from the
very active research fields of deep learning and AI and
to evaluate their potential for inddor USAR missions,
quick deployment, integration and testing of new and
computationally expansive methods is realized with
a strong backend at hand and a permanent network
connection to the UAVs.

4) There is a basic scenario with application to real USAR
missions, which is derived from our observations with
TRADR or other projects. The application of certain
methods from the current state of the art of deep
learning can be evaluated.

With this report we describe our current progress in the
development of such a system, starting from a somewhat
basic, fictional scenario so far: One UAV has been ma-
neuvered manually by a single operator through a building
until it reaches a corridor of a larger corridors system. The
UAV must now be maneuvered through the corridor, which
is tedious work. At some point though, there is an injured
person who is in acute danger, as he appears to have direct
contact to a possibly damaged container filled with hazardous
substances (see fig. 1). We considered several branches of
current research topics in deep learning to integrate them
in our system. We wanted to support the operator on several
levels: We considered an autonomous flight through corridors
to be a simpler subproblem of general autonomous indoor
flight as no complex decisions regarding wayfinding are to
be made and in most cases, ways are free from obstacles.
One of our hypotheses was that this task can be solved by a
neural net derived from existing methods for the autonomous
navigation of forest trails. Another one was that segmentation



and classification could be applied with the help of deep nets.
Finally we hypothesized that DNN based depth estimation of
the current image input could be used for collision avoidance
and local 3D modelling. The latter one could maybe help to
increase the spatial awareness of the operator. The outcome
on the AI side of the system is the following:

1) We have implemented a fast DNN which controls the
UAV through corridors autonomously. This provides
the operator with the opportunity to focus solely on
the scene.

2) We evaluated several methods for Object detection,
classification and segmentation, e.g. for the detection
of humans. One essential task for rescuers in collapsed
buildings is the search for trapped and injured humans.
Autonomous corridor flight might lead to overlooked
humans in acute danger so a person detection algorithm
seems vital. Warning signs at doors, walls or containers
might give hints regarding the nature of the catastrophe
or what kind of upcoming catastrophe could still
happen. Automatic detection and classification also
reduces the cognitive load of the operator.

3) We tested a DNN for direct depth estimation on 2D
image input for the sake of collision avoidance and
local 3D modelling to improve spatial awareness and
to ease manual navigation. We observed that cur-
rent methods are not reliable enough, e.g. to ensure
collision avoidance. We took a current method and
optimized the training with respect to the special scene
structure of indoor corridors. We think that considering
the specialities of the expected scene structure can lead
to more reliable applications in practice.

The paper is structured as follows. In the next chapter we
describe the state of the art regarding the application and
integration of small UAVs on USAR missions and related
topics. In chapter three we provide an overview over some
relevant UAVs available on the free market. In chapter four
we describe our current progress in the development of
a distributed system architecture for quick integration of
small UAVs and new AI/deep learning based methods. The
final chapters deal with the implementation, training and
evaluation of our individual solutions in real corridor scenes.

II. RELATED WORK

The integration and application of UAVs in Search and
Rescue missions has recently been researched in several
projects such as TRADR, EffFeu and Eins3D with different
priorities. In TRADR (Long-Term Human-Robot Teaming
for Disaster Response ) [5] [6] multiple UAVs and UGVs
with differing capabilities delivered different data which was
sent to a central system where that data was fused, processed,
persistently saved and finally presented to USAR forces. AI
was present at several levels of the project, but the main focus
was more on the representation, presentation and use of fused
data. Scenarios referred either to outdoor missions, indoor
missions or mixed missions with compositions of UAVs and
UGVs. Both UAVs and UGVs possessed autonomous modes
which could optionally be activated by a single responsible

operator in outdoor scenarios. For UGVs autonomous op-
eration modes were also available in indoor environments,
where UAVs were only flown manually.

The research project EffFeu (Efficient Operation of Un-
manned Aerial Vehicle for Industrial Firefighters) [3] focused
on the integration of UAVs in the work of industrial firefight-
ers. It provided an autonomous mission-guided control on
goal-oriented high-level tasks, such as the search for humans,
for both, indoor and outdoor environments. For outdoor
environments GNSS was used for the localisation, while in
GNSS denied areas (e.g. indoor areas) this was performed
by ORB-SLAM2 with RGB-D sensors in combination with
alignment with prior known maps (which are available to
industrial firefighters in practice). The project also applied
deep-learning based object recognition of relevant objects,
similar to our approach. However, unlike ours, the proposed
system was limited to simulated scenarios and UAVs and
did not cover the selection of specific devices and their
integration into the system. This includes the absence of
considerations such as size, weight and the stability of
the UAVs trajectory. Furthermore, while an AI-based object
detection algorithm was implemented, there was no focus on
quick integration and evaluation of experimental methods of
this field.

The project Eins3D (Luftbasierte Einsatzumge-
bungsaufklärung in 3D ) [7] was aimed at the development
of a single drone in combination with a real time capable
3D mapping for the purpose of delivering an overview of
the situation to USAR forces. The utilized UAV was a DJI
S1000+ which is too large for most indoor scenarios. AI
methods had not been part of Eins3D.

Croon and De Wagter identified requirements for the
autonomous navigation of UAVs in indoor environments [8],
also providing an overview of the current state of the art.
According to the authors, flying indoor with UAVs faces
several challenges:

1) Low traversability due to close spatial proximity and
high collision probability.

2) Usually only 2D cameras are available, but no active
3D sensors, due to size and power constraints. The
reconstruction of 3D information needs more compu-
tational power than small UAVs can provide.

3) UAVs are often not perfectly stable on their current
position, which can cause collisions. The drift can
not be balanced by accurate localisation onboard, see
previous point.

4) The authors recommended the usage and exploration
of AI methods to solve complex tasks, e.g. depth
estimation with deep neural networks and navigation
with deep reinforcement learning. They remarked that
some impressive progress has been made regarding
autonomous indoor navigation so far, but that there
is still no general and reliable autonomous navigation.
The authors suggest that open challenges for specific
scenarios should next be investigated.



III. ARCHITECTURE

Our current architecture, as shown in fig. 2, consists of
the following main parts:

1) A lightweight (<0.5 kg) consumer-grade UAV with a
monocular camera.

2) A mobile control station (e.g. a laptop) with a guaran-
teed network connection to the UAV, which provides
the UAV with the most critical control commands.

3) Multiple computation nodes (e.g. with PCs) with or
without GPU support for complex data processing
tasks from the AI domain (e.g. DNNs).

4) A distributor to establish the communication between
the UAV and other computation nodes. Both unidirec-
tional and bidirectional transfer modes are supported.
Meanwhile, the control station might also be a target
for some of the backend nodes and can also be
registered to the distributor.

The mobile control station is used by the operator to
control and supervise the UAV in teleoperation mode, but
once a corridor is entered, the control can be switched to AI-
assisted autonomous flight which allows the operator to shift
focus from flight control to mission execution. Furthermore,
the mobile control station forwards image data from the
UAV to computation nodes in the network and receives
processed data. The topological proximity of the control
station to the UAV reduces latency and increases network
stability for some of the most time-critical parts of the
UAV control. The distribution of data is implemented as
a separate process (”The distributor”) which can also be
deployed on a second computer. This is optional but it
can help to reduce the load on the control station if this
is required. We provide an easy-to-use interface to register
new processing tasks in the network. Data processing may
include computationally expensive methods, e.g. we make
use of recent deep convolutional neural networks (DCNN).
This requires powerful CPUs and graphics cards on the
computation nodes. Depending on the load and the available
resources, a node may even run multiple tasks at once.
Besides the previously mentioned AI-based tasks which we
have implemented so far, other methods can quickly be
added or existing tasks can easily be exchanged due to the
simplicity of our registration process. Thus, while being a
very basic architecture, it sufficiently supports the integration
and evaluation of complex systems of various state of the art
methods in real applications.

IV. UAVS

The following devices are exemplary for commercially
available UAVs in the < 0.5 kg, < 40 cm range. The Ryze
Tech Tello EDU is a small (98×92.5×41 mm (L×W×H)),
light (0.08 kg) and inexpensive (155 Euro) UAV designed
for educational purposes1. It carries a fixed camera capable
of 720p video and is stabilized through an onboard vision
positioning system. As part of DJI’s lineup of UAVs both

1specifications from https://www.ryzerobotics.com/de/
tello-edu/specs

the Spark and the Mavic Mini are light (0.3 kg and 0.249 kg)
and small (143×143×55 mm and 160×202×55 mm (L×
W ×H)) and are therefore suitable for indoor operations
2. These UAVs are equipped to stream 1080p or 2.7K
video streams from their gimbal-mounted cameras. The Tello
has the shortest flight time of all these UAVs of just 13
minutes. The other two UAVs can fly for up to 30 minutes.
For our initial implementation, we chose the Tello because
of its robustness, size, and simple interface. An additional
protective cage keeps the UAV and its environment safe.
This became apparent while testing experimental software
in small corridors.

To communicate with the mobile control station, the Tello
creates an ad-hoc WiFi network. This limits the range of
the UAV to 100 meters under optimal conditions without
interferences. For indoor flights, the range is reduced sub-
stantially, and it was necessary to follow the UAV with the
laptop during our experiments, therefore its use is limited to
development and quick testing. The Tello SDK 2.0 allows
us to receive a video stream and status information from the
UAV and to send control commands programmatically.

The other DJI UAVs use specialized hardware and com-
munication protocols in their remote controls allowing for
much longer flight distances (e.g. up to 2000 metres for
the DJI Mavic Mini). DJI provides the DJI Mobile SDK
for the DJI Spark and Mavic Mini to interface with those
proprietary devices. However, to easily integrate a multitude
of different UAVs, a common and open communications
interface is necessary. The MAVLink protocol provides such
an interface for small UAVs and libraries with MAVLink
support are available for many programming languages. This
gap between the DJI Mobile SDK and MAVLink is bridged
by Rosetta Drone, a wrapper that allows us to communicate
with DJI UAVs via MAVLink.

We will continue with the integration of DJI UAVs with
Rosetta Drone as part of our contribution to the A-DRZ
project. The increased range over the Ryze Tech Tello will
allow us to establish the control station at a safe distance
from potentially dangerous areas. The suitability of small
UAVs for enclosed spaces will be evaluated further during
the A-DRZ project.

V. NAVIGATION

To relieve the UAV pilot from the mental strain of pre-
cisely controlling the UAV over a long time, we wanted to
offer the ability to activate an assistive function that steers
the UAV through corridors. When enabled, the UAV follows
the hallway in the current direction, and the pilot has to
disengage the function manually to change the route or
inspect some point of interest in the environment.

For this we build on the work of Giusti et al. [9]. In
their paper they describe a CNN which was trained to follow
forest trails. We assume that following a forest trail and a
corridor are similar tasks and that a corridor is even simpler
to navigate because it does not contain the same amount of

2specifications from https://www.dji.com/
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Fig. 3. Illustration of the three output classes of our neural network in different situations. The middle bar represents the velocity of the UAV directly.
From the other two output values, represented by the outer bars, the turning direction is calculated by the difference between these two values.

relevant features as a forest trail. Therefore, we shortened the
original architecture by removing two pairs of convolutional
and max-pooling layers. Analogous to [9] we used a setup
of three GoPro action cameras, one directed forward, two
angled to the sides, to collect 90000 images of corridors
in the building of the Westphalian University of Applied
Sciences. From each image triple the outer two images
were labeled as ”move left” or ”move right” respectively,
the middle one with ”forward”. To encode this information
numerically we used a one-hot-encoding style. All other
aspects of the training were identical to that described in the
work of Giusti et al. A cheap mid-range Nvidia Geforce GTX
1060 6GB was sufficient to train the network for 300 epochs
or 3 hours. We then chose the epoch with the best evaluation
result. The ”forward” output of the neural network is linearly
mapped to the velocity of the UAV by some empirically
found eta. In contrast to our training data the image input
from the UAV under practical conditions exhibits situations
where the neural net could find a reason to turn both left
and right, e.g. if the UAV is close to a wall of a corridor and
looking towards the opposite wall of the corridor. For this
reason we determine the turning direction by computing the
difference between the remaining two outputs (fig. 3).
With the shortened CNN we reach a control loop time of just
four milliseconds, which is more than enough to fulfill the
time constraint with a 30 fps video stream. As the navigation
is a time critical task we run it on the control station in close
proximity to the UAV to avoid additional latency. While
our approach to follow corridors without collisions works
fine in most cases, see our video on youtube3, we noticed
some situations where the UAV gets stuck on seemingly
unimposing details in the environment and continues to
alternate between turning left and right quickly.

To improve the performance of the corridor flight, we
consider modifying the network so that lateral movement
becomes possible. Another idea is to use multiple consec-
utive frames as input or to incorporate an LSTM layer to
prevent the UAV from getting stuck in fast oscillating moves.
Another concept worth investigating is the combination with
depth estimation in a concurrent way where the network
retains its quick reaction time but benefits from the additional
depth information, which is updated every N frames.

3https://www.youtube.com/watch?v=muQAA7_2ZdU

Fig. 4. Semantic segmentation of a person in acute danger in realtime
using a lightweight RefineNet.

Fig. 5. Detection and classification of warnings signs in real time with
R-FCN

VI. SEMANTIC SEGMENTATION
AND OBJECT CLASSIFICATION

While our autonomous corridor flight system helps to
reduce the cognitive load of USAR forces in stressful situa-
tions it comes with a drawback: Losing focus on the scene,
certain objects of interest, e.g. containers for dangerous
goods or humans in acute danger could be overlooked. For
this reason a real-time capable automatic object detection
and classification system is required. Such a system could
either be used as part of the autonomous navigation routine
itself or for a sudden switch from autonomous flight to
manual control. Another major benefit from automatic object
classification is its step towards automatic scene understand-
ing. If two individuals were previously working together
to control the UAV, one for the navigation, the other for
scene observation, an automatic scene understanding would
be a major step towards a single-handed UAV application.
Our current progress in object detection and classification
falls behind the other areas, so we rather focussed on quick
experiments than on methodologically clean solutions. Here

https://www.youtube.com/watch?v=muQAA7_2ZdU


we benefit from our rapid integration of new tasks in our
system.
We rapidly integrated a lightweight RefineNet for real time
semantic segmentation [10] on one of the computation nodes
in the backend in order to detect and to classify important ob-
jects in our scenario, including humans, containers (as shown
in the example above) and bottle-like-structures such as
fire extinguisher. We trained different versions of RefineNet
with varying sizes on multiple, freely available datasets for
semantic segmentation including the PascalVOC dataset [11],
Pascal Person Part, Pascal Context and NYU. We found
that even a small-size RefineNet based on RF-LW-ResNet
50 [10], trained on Pascal VOC can show promising results
for real-time segmentation of humans and fire extinguishers
in corridor scenes (see fig. 4), while others, like the Pascal
Person Part, were less accurate.
In order to detect and classify relevant warning signs we
trained a R-FCN (Region-based Fully Convolutional Net-
works) [12] on two datasets with different warning signs. The
first dataset contained a set of eight warning signs consistent
to ISO 7010 [13] and preceeding standards, the seconded
dataset included images with six types of pictograms con-
sistent to the Globally Harmonized System of Classification
and Labelling of Chemicals (GHS) [14]. For each dataset
we created various perspectives of each warning sign using
a homography transformation and inserted them in images
of different scenes. Warning signs were scaled, rotated and
skewed in the process. In total our dataset consisted of
8459 images or 7274 images with pictograms respectively. In
both cases we continued the training of models which were
pretrained on the COCO dataset [15]. While this allowed us
to detect warning signs on UAV footage, as seen in fig. 5, we
noticed some situations where the detection failed, probably
due to missing edge cases in the training data.
However, there is still a lot of work for us to do regarding
object classification, namely in the evaluation and the in-
teraction with the other tasks of our system. One important
feature of the A-DRZ is the integrative and cooperative work
between researchers in technology and real USAR forces. In
the near future we plan to identify objects essential for real
USAR mission scenarios, leading to dataset creation, model
design and training as well as to integrative testing in real
scenarios.

VII. MAPPING

The sparse point clouds of SLAM algorithms are often
difficult to interpret if the user has no prior knowledge about
the geometry of the underlying scene. This is mostly due
to the circumstance that monocular SLAM algorithms focus
on tracking and localisation and are constrained by realtime
requirements.

In our mapping approach, we attempt to improve the situ-
ation by combining a popular SLAM method with semantic
segmentation to create a dense floor map. With the indirect
ORB-SLAM2 (Monocular) [16] we track the UAV movement
and use the sparse point cloud to identify the plane of the
floor. For this, we apply the RANSAC algorithm on the

lower half the point cloud, which is determined from UAV
movement and orientation provided by ORB-SLAM2. We
applied a variant of DeepLab-ResNet with 27 classes (which
are condensed and more generic compared to the original
150 classes) for the segmentation of floors on images, taken
by the UAV, which were also selected as keyframes by
ORB-SLAM2. Utilizing the known camera poses from ORB-
SLAM2 we then projected the pixels of a segment on the
previously determined 3D floor pane. Figure 6 illustrates an
example for the outcome of the three main steps.

While it is possible to create a dense map of the floor
below a UAV trajectory with our approach, one has to make
certain assumptions about the environment, which limits
its usability. In the first place the floor must have enough
features to be identifiable. There must also be a single,
regular floor plane. Multiple floor segments on different
planes would need clearly defined borders which depends
highly on the quality of the results of the SLAM and
semantic segmentation (this was typically not given in our
scenario). Therefore, we will most likely concentrate on
depth estimation based methods in the future to provide a
human-readable map see VIII.

VIII. DEPTH ESTIMATION

The choice of small, lightweight UAVs which only pro-
vides video input affects 3D scene modelling, SLAM or
collision avoidance. In addition, local 3D scene modelling
can help to improve situational awareness on USAR mis-
sions. For example, even trained experts often are in trouble
with transitions of tight doorways or open windows as
the estimation of the UAVs dimension in the scene is a
surprisingly demanding cognitive task. This becomes even
more immanent in stressful situations on USAR missions.
Also, if no omnidirectional camera is used, the surrounding
environment of the UAV is only partially visible. This may
cause potential dangers to be occluded. In recent years DNNs
to estimate depth from 2D images became increasingly
popular among AI researchers [17], [18], [19]. There is an
established pool of freely available datasets for training and
testing, such as the NYU Depth v2 for indoor scenes [20].
However, the accuracy of these methods often depends on the
scene. This is partly due to the problem statement itself, since
it is ill-posed in nature, limiting the potential for 3D sensor
substitution. Fuhrman et al. used a recent depth estimating
DNN for collision avoidance on UAVs [21]. As stated by the
authors, the DNNs instable accuracy led to collisions, even
though some obstacles have successfully been avoided.
We used DenseDepth, which was amongst the most accurate
methods according to the NYU Depth v2 dataset [22] at the
time of this paper, and tried to push the network to be more
accurate in corridor scenes specifically. We tried so by two
means:

1) We created ∼ 2400 RGB-Image/Depth Image pairs
from corridors with a Microsoft Kinect v1 and added
them to the NYU Depth v2 training data set (∼ 10000
pairs)



Fig. 6. Left: Feature Detection from ORB-SLAM, Center: Segmentation of the Floor with a DCNN, Right: Projection of the segment onto sparse
Pointcloud

Fig. 7. Results of DenseDepth before (top row) and after refined training (bottom row). From left to right each row shows the original image input, Depth
image from inference and the resulting 3D point cloud. Notice that we limit the range of the inferred depth of our optimized DenseDepth (bottom row)
since the range of the Kinect v1 is limited to ∼ 4m. Direct comparison of the Depth estimation before and after retraining shows a clear improvement in
accuracy in corridor scenes.

2) We exploited the special scene structure in the training
process, which is dominated by floors and walls, that
is, by planes.

We created 3D point clouds from depth images and
extracted the largest planar segments (in many cases, these
segments were eventually walls and floors). Because of
the RGB-/Depth correspondence, a mapping is given from
3D to pixels in the RGB image. This allowed us to create
binary images indicating planes in the RGB image. We
used these binary images as weighted masks µBMask for the
depth term in the loss calculation of DenseDepth:

L(y, ŷ) = λ (1+µBMask)Ldepth(y, ŷ)+Lgrad(y, ŷ)+LSSIM(y, ŷ)

We set λ to 0.1 and µ to 1, but we have not investigated

other values yet. Without a claim of completeness, it just
was our expectation that the adjustment of the loss term
increases the pressure on planes during training. Although
this is somewhat vague and doesn’t hold scientific standards,
we nonetheless feel that it is worth to report our current
progress here. We trained an already pretrained DenseDepth
for another 40 Epochs. All other training parameter remained
unchanged to [18].
So far, we evaluated the results empirically by observing the
output in corridor scenes, which had not been part of the
training data set. In situations where the camera was moved
in a straight line through corridors, we observed that the
accuracy of our retrained version of DenseDepth improved
over the original version (see fig. 7). We observed that the
result gets unstable though in situations where the camera
has an orthogonal view to walls, e.g. when the UAV moves



around a corner. In our opinion, this is mainly due to a lack
of examples in the training data.
Eventually, we think that it is worth to further investigate
this matter and to follow up with a clean evaluation to
prove our claim. In the future we also plan to transfer our
approach to other DNNs which may be either faster and
more compact or more accurate or both, and to create new
indoor datasets for retraining. We want to evaluate other
current depth estimating DNNs in terms of their potential
for real-time collision avoidance and local and global 3D
scene modelling and localisation.

IX. CONCLUSIONS

Small UAVs (< 40 cm diagonal) enable USAR forces to
enter buildings through small holes, open doorways and
windows. Equipped with 2D cameras they deliver live video
streams of scenes inaccessible for humans and series of
images for later 3D scene modelling and inspection. The
control of UAVs via 2D images however is cognitively
demanding resulting in reduced focus on scene observation.
In practice the cooperative work of two individuals is often
required. Reduction of cognitive load is therefore useful.
In this report we described our current progress in the
development of a system which consists of one or multiple
small UAVs for indoor flight, a scenario for an indoor rescue
mission and a set of recent AI methods from very active
fields and eventually a distributed system which distributes
data across a backend of computation nodes. Our main
objective was the creation of a system which allows us
to quickly test new AI methods of potential interest for
USAR indoor missions on live data of an UAV and under
practical conditions, including the interaction of a multitude
of nets. Our expectation here is to better keep track with
the current state of the art. In our first scenario we have
implemented various methods to provide assistence on mul-
tiple levels for the operator, ranging from guided autonomous
navigation to improved spatial awareness through local 3D
scene modelling. All these methods have been integrated
in a distributed system architecture which features quick
integration of both, methods and UAVs. Further methods can
later be added or existing ones can later be exchanged if
desired. The rapid integration of methods allows for quick
evaluation of these methods how they interact. In the future
we plan to invest more work in our current AI methods and
the expansion of interfaces to integrate more sophisticated
commercial lightweight UAVs.
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