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Abstract: Virtual Machine Introspection (VMI) is a powerful technology used to detect and
analyze malicious software inside Virtual Machines (VMs) from outside. Asynchronously
accessing the VM’s memory can be insufficient for efficiently monitoring what is happening
inside of a VM. Active VMI introduces breakpoints to intercept VM execution at relevant
points. Especially for frequently visited breakpoints, and even more so for production
systems, it is crucial to keep their performance overhead as low as possible. In this
paper, we provide a systematization of existing VMI breakpoint implementation variants,
propose workloads to quantify the different performance penalties of breakpoints, and
implement them in the benchmarking application bpbench. We used this benchmark to
measure that, on an Intel Core i5 7300U, SmartVMI’s breakpoints take around 81 µs to
handle, and keeping the breakpoint invisible costs an additional 21 µs per read access. The
availability of bpbench facilitates the comparison of disparate breakpoint mechanisms and
their performance optimization with immediate feedback.

Keywords: virtual machine introspection; performance; benchmarking

1. Introduction
Code introspection methods, such as software debugging, play a critical role in an-

alyzing and understanding program and system behavior. They enable the detection,
diagnosis, and mitigation of issues, e.g., security-related problems, or facilitate execution
performance measurements. Virtual Machine Introspection (VMI) encompasses techniques
used to monitor, analyze, and manipulate the internal guest state of a VM from external
environments such as the host system or other VMs. This is accomplished by reading and,
if necessary, changing the values of the virtual CPU (vCPU) registers and data in the main
memory of the monitored VM combined with its semantic interpretation. VMI as a concept
was initially introduced by Garfinkel and Rosenblum in 2003 [1]. In practice, it has been
used for security and forensic purposes because it enables administrators and defenders to
detect and analyze malicious activities within VMs [1]. Hence, there is significant interest in
applications within the fast-growing cloud computing environment [2]. VMI-based tracing
mechanisms are also used for dynamic malware analysis, manually or highly automated in
sandboxes [3,4].

VMI-based intrusion detection or malware analysis systems have several advantages
over kernel-mode or user-mode methods that run on the same system (inside the same
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VM) that is to be monitored. Two important aspects include (i) isolation (sensor isolation
from the analysis target) and (ii) transparency (sensor invisible for the analysis target).
Virtualization ensures strong isolation between the guest software to be monitored and the
sensor software. This makes it significantly more difficult for the attacker to detect and
manipulate the monitoring software [5], allowing for more resilient observation. However,
a key challenge for VMI applications is to bridge the semantic gap [6], i.e., accurately
interpret the guest software semantics based on guest memory. Typically, this involves an
in-depth understanding of OS and application data structures [7], possibly derived from
debugging symbols or via complex reverse engineering efforts, particularly when facing
closed-source guest software. When this key challenge is successfully addressed, VMI
monitoring enables comprehensive event tracing and memory analysis, providing critical
information on the behavior of the system and application.

Modern VMI solutions primarily perform inspections in response to VM events (e.g.,
page faults, Control Register 3 (CR3) writes, or breakpoint interrupts). Dangl et al. [8]
refer to this reactive approach as active (or synchronous) VMI, while passive VMI tasks
are scheduled asynchronously by the outer monitoring software. A key method of active
VMI is breakpoints that will be placed by the outer analysis software at particular locations
inside the guest code. Whenever such a breakpoint is triggered, the VMI software can
analyze the guest state related to the intercepted execution (e.g., reading the function
arguments of an invocation). Beyond placing breakpoints, more invasive manipulations of
the guest state can be useful. For example, the VMI software DRAKVUF [9] uses function
call injections to interact with the guest Operating System (OS) Application Programming
Interfaces (APIs) to perform data transfers between the target VM and outer environments,
or to invoke process starts (called process injection).

The attempt to create a first standard of a low-level VMI API as an interface between
VMI applications and hypervisors with access capabilities led to the libVMI project [10].
This library focuses on accessing VM memory and vCPU registers. It can deal with the
Guest Virtual Addresses (GVAs) of the guest process address spaces and is able to translate
them into Guest Physical Addresses (GPAs) of the VM. In contrast to Host Physical
Addresses (HPAs), GPAs are also virtual addresses from the host’s point of view, but from
guest’s perspective, they are the physical addresses (of the VM). The bottom line is that
libVMI enables data access addressed via both guest process-related GVAs and GPAs. To
translate GVAs into GPAs, the library performs a page table walk on the tables managed
by the guest OS in software, efficiently implemented with software-side caching. The
existing prerequisite is that libVMI is aware of the guest OS and is able to interpret the
required internal data structures of the guest OS. Unfortunately, breakpoint-handling is
not covered by libVMI. Only a minimal trap interface is provided, allowing the control
flow to be intercepted when a VM event occurs, e.g., page faults, CR3 writes, or breakpoint
interrupts. The handling of execution breakpoints with reconstruction and re-execution of
the original trapped instruction are typically implemented by the VMI application, if at all.
As a result, various concepts and implementations have been developed.

Building on our work developing a VMI infrastructure for the KVM hypervisor to
realize security monitoring for Windows guests, we investigate, among other things, the
various breakpoint-handling mechanisms employed in different VMI applications. In
this paper, we present an overview and classification of these different methods. The
VMI software stack on which we focus consists of the virtualization stacks KVM/QEMU
and XEN/QEMU, and the VMI applications SmartVMI and DRAKVUF. SmartVMI [11]
is a VMI application software based on libVMI, which was developed in the SmartVMI
research project [12] by VMI researcher D. Eikenberg (GDATA) and partners. It provides
a plugin interface and guest access functionalities to implement custom VMI monitoring
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logic. A VMI-based guest memory YARA scanner and a guest API call tracer are available
as plugins. DRAKVUF [13] is a plugin-agnostic VMI application software for monitoring
guest behavior, too. It was developed by T. Lengyel with a focus on stealthiness [14].
There are a lot of plugins and libraries available, targeting different use cases of automated
malware analysis used in sandbox solutions. DRAKVUF is also built on top of libVMI but
currently only supports the XEN hypervisor as a virtualization back end.

In most use cases, runtime performance is critical for different reasons. For sandboxes,
minimizing the overhead from VMI sensor interceptions is advantageous, because the
additional cycles spent while the vCPUs are paused extend the real-world execution time
without affecting the effective execution time within the VM. Longer execution times
reduce the analysis throughput in Sandbox clusters, or provide angles for timing-based
evasion checks [15], and should be avoided. Similarly, for VMI on endpoint VMs with user
interactions, low-latency VMI interceptions are very important because applications with
soft real-time requirements do not tolerate long interruptions. This is especially true for
graphical user interface activities in the case of VMs operated by human users. Customers
of VMI-monitored VMs expect their systems to be responsive.

For the reasons mentioned above, our research includes micro-benchmarking experi-
ments regarding runtime performance and latencies, from which we present the first results
in this paper. In summary, we make the following contributions:

• We propose and implement a benchmark for x86_64 breakpoint approaches suitable
for measuring the execution performance (timing) of VMI-based breakpoint imple-
mentations.

• We provide preliminary results of our breakpoint benchmark workloads for the VMI-
based breakpoints implemented in SmartVMI.

The rest of this paper is structured as follows: Section 2 provides a structured overview
of existing breakpoint-handling approaches. Section 3 then identifies the relevant perfor-
mance aspects and defines workloads to benchmark them. Initial measurements for one
breakpoint implementation are presented in Section 4, before Section 5 highlights relevant
existing works. Finally, Section 6 concludes the paper by summarizing and discussing the
results, and giving an outlook to future work.

2. Background
This section provides an overview of existing implementations of hyper-breakpoints,

including their strengths, limitations, and trade-offs in Section 2.2, followed by highlighting
a possible optimization strategy to avoid false-positive breakpoint hits in Section 2.3. We
focus on the x86_64 ISA and the Intel VT-x virtualization extension.

2.1. Breakpoint Basics

User-mode debugging. First, we take a look at classical software breakpoints that
debuggers like GDB or WinDBG utilize to debug user-mode programs, while running the
debugger as a user-mode program themselves. A debug API provided by the Operating
System enables the debugger process to attach to a process to debug (debuggee). This allows
the debugger to read and write in the address space and execution states of the debugging
process. Given the virtual address of the instruction in the debuggee’s address space where
the breakpoint should be placed, the debugger overwrites the first byte of the original
instruction of the debuggee code with 0xcc, the opcode of the int3 instruction (breakpoint).
When the instruction pointer reaches the breakpoint address and executes the injected
breakpoint instruction, a software/exception interrupt is triggered. This causes the CPU to
switch to kernel mode and execute the OS interrupt handler. The OS breakpoint-handling
mechanism saves contexts, stops threads in the debugging process, and passes a breakpoint
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event to the attached debugger process. The debugger can inspect the memory and the
register states (from saved contexts) of the paused debuggee. To continue execution, the
debugger restores the original instruction and switches the thread to single-step execution
mode by setting the Trap Flag (TF) in its x64 Flags Register (RFLAGS) register of the
thread’s CPU context, before resuming execution of the debuggee. The restored instruction
is executed, and immediately afterward, the CPU triggers a debug exception/interrupt
again because of single-stepping mode. The debugger’s single-stepping handler finishes the
current breakpoint handling by reinserting the int3 breakpoint instruction again, disabling
the single-stepping, and resuming debuggee threads.

2.2. Breakpoint-Handling Approaches for VMI Debugging

Breakpoint Handling with Single-Stepping (SmartVMI). We continue by inspecting
the current SmartVMI breakpoint implementation, a security-oriented VMI implementation.
At its core, it is a direct adaptation of the classical software breakpoint approach, with the
hypervisor and VMI application taking over the role that the debugger process previously
had. Given a guest process and the virtual address (inside of a VM referred to as a GVA)
where the breakpoint will be placed, it is not as straightforward to insert the breakpoint.
The details are irrelevant to the discussion about breakpoint invocation performance, so
we only provide a short summary. SmartVMI has to be aware of some internal data
structures of the guest OS to find the process control structure (EPROCESS for Windows)
in the kernel space of the guest memory with the guest physical page table base address
inside. Next, SmartVMI has to perform a page table walk in the software to translate the
given GVA to a GPA, which then can be referenced to write the int3 instruction byte. The
described translation is implemented in libVMI used by SmartVMI in an efficient way
with software-side caching. It is critical that the software interrupt caused by int3 is not
handled by the guest OS’ interrupt handler inside the VM, but instead causes a VM exit
and passes control to the hypervisor. This behavior is determined by the Virtual Machine
Control Structure (VMCS) and must be addressed in advance by the VMI application.
On breakpoint execution, the vCPU is paused, and the hypervisor sends an event with
the relevant information to SmartVMI. The SmartVMI breakpoint handler instructs the
hypervisor to restore the original instruction and to enable single-stepping. Instead of
modifying the TF, the Monitor Trap Flag (MTF) in the VMCS is set, which is the equivalent
single-stepping functionality provided by the processor’s virtualization extensions, i.e.,
the guest will trigger a VM exit after executing an instruction. The vCPU is resumed,
executes the original instruction, and traps to the hypervisor again due to single-stepping,
which sends an event to SmartVMI. The single-stepping handler reinserts the breakpoint
instruction, disables the single-stepping, and resumes the vCPU. The whole process is
visualized in Figure 1.

Unfortunately, there is an issue with this approach. It only works reliably for VMs
with a single vCPU. In multi-vCPU environments, it generally works, but a race condition
can cause missed breakpoints. When one vCPU hits a breakpoint and restores the orig-
inal instruction to single-step it, other vCPUs can execute the original code without the
breakpoint until the single-stepping handler has reinserted the int3 instruction. There
are multiple ways to address this. The simplest solution is to halt all other vCPUs while
handling a breakpoint hit. This has the additional advantage that the VMI application has
the guarantee that no changes to memory can occur, which might be beneficial for scanning
through memory (data consistency). However, the overhead and, therefore, the impact on
VM performance are considerable.
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Figure 1. Control flow sequence of a breakpoint handling with single-stepping.

Breakpoint Handling with Instruction Emulation. Another possibility is to eliminate
the single-stepping and utilize instruction emulation instead. Emulation means that the
hypervisor reads the x86 instruction bytes from guest memory and performs the instruction
in software by reading source register values from the saved vCPU context (part of VMCS)
and/or source guest memory locations, calculates the results, and writes them into the
vCPU’s destination register and/or guest memory locations. To be exact, instruction
emulation in described pure form, which would emulate the instruction currently found
at the vCPU’s instruction pointer, would not help much. It would still be necessary to
restore the original instruction, again enabling other vCPUs to miss the breakpoint. Instead,
the emulation has to be able to accept the original byte as an additional parameter and
reconstruct the instruction that should actually be emulated. With that, the int3 can remain
in place, and skipping becomes impossible. Figure 2 illustrates the adapted workflow.
While theoretically a simple and efficient solution, there exist warnings in the hypervisor
documentation about instruction emulation being incomplete, and it might not cover
all corner cases. This could lead to system instability [14]. It is important to note that
malware might try to strain the instruction emulator with uncommon instructions, such
as redundant or unusual combinations of instruction prefixes. A minimal example of a
breakpoint handler that leverages the implementation of instruction emulation of libVMI
is available (https://github.com/libvmi/libvmi/blob/8f9b010b0261dbc11e2dda5e718b0e9
507109232/examples/breakpoint-emulate-example.c (accessed on 16 December 2024)).

https://github.com/libvmi/libvmi/blob/8f9b010b0261dbc11e2dda5e718b0e9507109232/examples/breakpoint-emulate-example.c
https://github.com/libvmi/libvmi/blob/8f9b010b0261dbc11e2dda5e718b0e9507109232/examples/breakpoint-emulate-example.c
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Figure 2. Control flow sequence of a breakpoint handling with instruction emulation.

Stealthy Breakpoints: PageGuard (SmartVMI). While the use of MTF is transparent
to the guest, the same cannot be said for the inserted int3 instruction, which the VM
could detect reading the address of the breakpoint. A relevant example of this is software
that performs code integrity checks [16]. For example, some malware uses this in anti-
analysis checks [17]. Another example is the Windows kernel that contains Kernel Patch
Protection (KPP), also called PatchGuard [18], which would cause the system to bluescreen
once it detects tampering of the kernel code (driver code excluded) and some important
data structures (e.g., System Service Dispatch Table (SSDT)). SmartVMI solves this with
a concept referred to as “PageGuard”. Modifications to the Extended Page Tables (EPTs)
enable full control over access to the memory. EPT is a crucial component of memory
management of hardware-assisted virtualization. While the “normal” guest page tables
perform the translation from GVA to GPA, another Second Level Address Translation
(SLAT) at the host/hypervisor level is necessary to map from GPA to System Physical
Address (SPA). A read, write, or execute access to a page is only permitted when the
entries of both page table sets have the corresponding permission bit set. Specifically, in the
PatchGuard example, the pages storing kernel code have read and execute permission in
the entries of the guest page table sets. With active “PageGuard”, the EPT entries of the
page table set stores a permission for execution, and neither reading nor writing. When
the PatchGuard tries to read from the page where a breakpoint has been inserted, an
EPT violation is caused, resulting in a VM exit and consequentially in a memory event
notifying SmartVMI. Restoring and single-stepping are not necessary in this case; instead,
the hypervisor can be instructed to emulate the read access and deliver the original bytes
specified by SmartVMI. Thus, before inserting breakpoints on a page, SmartVMI creates
a shadow copy to be able to retrieve the correct content when memory access emulation
events occur. This effectively hides the breakpoint for KPP or other integrity checks,
including malware-driven checks.

altp2m—alternative guest physical page to machine translation. A different method
for breakpoint handling is alternative guest physical to machine translation (altp2m) [14].
It provides multi-vCPU support and guest-invisible breakpoints. The approach does not
rely on modifying the guest memory at all; instead, it fully relies on EPT permissions.
Similar to how SmartVMI’s “PageGuard” traps read accesses, altp2m activates a “break-
point” by removing the executable permission on the desired page, i.e., no breakpoint
instruction is used anymore; instead, the breakpoint is only a virtual breakpoint. Virtual
breakpoint means that the execution of each instruction of the page is intercepted and
handled accordingly at the address where the virtual breakpoint is set. Upon execution
on a page with a virtual breakpoint, this triggers an EPT violation, yielding control to the
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hypervisor. However, continuing execution by setting the EPT permission again, single-
stepping, removing the permission, and then resuming the vCPU would lead to the same
race condition problem as previously discussed with the removal of the int3 instruction.
The altp2m solution uses vCPU-specific EPTs, i.e., it is possible to maintain multiple EPTs,
and the hypervisor can control for each vCPU individually which EPT it uses. Thus, two
EPTs are maintained. The first is missing the executable permission on pages containing
virtual breakpoints and is enabled by default (when vCPUs are executing normally). When
an EPT violation occurs on a vCPU, altp2m switches the vCPU’s EPT to the second one and
activates single-step mode. This second one has the executable permission set, allowing the
vCPU to single-step execute the original instruction. All other vCPUs still use the restricted
EPT and, therefore, do not miss the virtual breakpoint. After the breakpoint-handling
vCPU has single-stepped, it switches back to the first EPT, i.e., the one without executable
permission for pages.

With altp2m, there is no extra care necessary to keep the breakpoints stealthy, be-
cause virtual breakpoints are invisible by design. Memory reads can happen normally
as there are no modifications to the memory. The EPT and its permissions are part of
the host/hypervisor environment and inaccessible to the guest software. The trade-off
for having no overhead on memory accesses is that there is a significant penalty to the
execution speed on pages with virtual breakpoints. A big problem is that the memory
access permissions are coarse-grained: they can only be set per page (page granular). The
longest valid instructions on x86_64 architecture are 15 bytes in size. Thus, on a com-
pletely filled code page, there will be a minimum of 4096/15 ≈ 273 instructions, and in
the theoretical worst case, a total of single-byte instructions, and each of them has to be
handled as a breakpoint, even if one is only interested in stopping at a single one of them.
Considering the likelihood that code is executed more often than read or written, this is a
major drawback.

Optimized altp2m—combination with breakpoint instructions (DRAKVUF). The
VMI monitoring tool DRAKVUF [13] combines the use of int3 instructions with the altp2m
approach of multiple EPTs. Its breakpoint mechanism is also described in [14]. Instead of
having multiple EPTs pointing to the same SPA with different permissions, DRAKVUF
creates a copy of the page frame where a breakpoint should be inserted. So, we have two
page frames, one with the original instruction and one with an int3 instruction at the
breakpoint location. One version of the EPT remains unmodified, and can keep pointing to
the original page frame with unchanged permissions. The other EPT version points to the
page frame; an int3 instruction is inserted. The associated permission on this second EPT
version is set to execute-only, and by default, this EPT is the active one on all vCPUs. Thus,
when a vCPU’s execution is moving towards the breakpoint and executing instructions on
the same page, the execute-only permission allows it to execute all other instructions, which
have not been changed, completely normally. When the instruction pointer reaches the
breakpoint, the inserted int3 instruction is executed, triggering the breakpoint interrupt,
eventually reaching the corresponding handler in DRAKVUF’s VMI application logic.
Exactly as with altp2m, a switch of the EPT provides the paused vCPU with the original
instruction and execute permission, enabling it to single-step once and then switch the EPT
back. Meanwhile, the other vCPUs continue using their respective EPTs and are unaffected.
When the breakpoint or any other address on the same page is read (e.g., PatchGuard case),
the execute-only permission causes an EPT violation, which is resolved by emulating the
read access.

Table 1 summarizes the breakpoint approaches covered in this work.
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Table 1. An overview of breakpoint handling approaches.

Approach BP Trigger Handling of the Original
Instruction MP-Safe Stealth

User-mode debugging
(no VM) int3 Replace + single-stepping (TF) No None

Single-Stepping
(SmartVMI) int3 Replace + single-stepping (MTF) No Trap on read (EPT) + Emul.

Instruction Emulation int3 Instruction emulation Yes Trap on read (EPT) + Emul.

altp2m EPT
violation

EPT switch + single-stepping
(MTF) Yes Invisible by design

altp2m with int3
(DRAKVUF) int3 EPT switch + single-stepping

(MTF) Yes Trap on read (EPT) + Emul.

2.3. Breakpoint Invocation Optimization

There are scenarios where a breakpoint may frequently trigger VM exits that are
unrelated to meaningful breakpoint hits, a phenomenon we refer to as false-positive
breakpoint hit. Consider the example of detecting file openings of a specific process by
setting a breakpoint in the CreateFile function of Windows’ API library kernel32.dll
inside the process virtual address space. Such DLLs are shared libraries; to optimize
memory utilization, the code of shared libraries exists only once in (guest) physical memory,
which is mapped into all the (guest) virtual address spaces. Consequently, inserting a
breakpoint instruction inside the (guest) physical page frame (inevitably) enables the
breakpoint for all processes. In the given example, kernel32.dll is linked to almost all
processes running on a Windows system, and since CreateFile is a frequently invoked API
function, this setup has two drawbacks. First, it may lead to breakpoint hits in processes
that are outside the scope of the analysis and irrelevant to monitoring. Second, if we use
a breakpoint mechanism where every execution in the page with a breakpoint leads to
a VM exit, code adjacent to the breakpoint in CreateFile within the same page, even if
unrelated to CreateFile, also triggers a VM exit and the breakpoint inspection routine.
Both drawbacks are likely to contribute to performance degradation.

In a single-vCPU scenario, only a single process can be actively executing. When the
target process is not the active process, the breakpoint can be removed. When the target
process is scheduled, the breakpoint has to be activated. SmartVMI implements exactly this.
Each process has its individual virtual address space, which is realized by a process-specific
page table set. Before a process gets scheduled, the kernel has to instruct the Memory
Management Unit (MMU) to use the correct page table set. As what we call “page table
set” actually is a four-layer-deep tree of page tables, the MMU of a specific CPU core that
executes the thread of the process is informed by writing the (guest) physical address of the
root/base page table (called Page Map Level 4 (PML4)) to the CR3 register when the thread
is dispatched. SmartVMI instructs the hypervisor to configure VM exit on the CR3 register,
which writes and provides an event that informs of the occurrence and the value that is
being written. Then, the assigned handler for this event can iterate all process-specific
breakpoints and check whether they need to be active for the new process (identified by its
CR3 value). All breakpoints that are detected to have to change status can now be enabled
or disabled. Finally, the hypervisor can be instructed to let the vCPU resume its execution.

When multiple vCPUs exist, the new CR3 value is not enough to determine whether
a breakpoint should be active; the associated CR3 value additionally has to be checked
against the active CR3 value of the other vCPUs. This avoids having a breakpoint disabled
when it should be active, but it is impossible to avoid false-positive hits in this case. If the
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target process runs on one vCPU and another process using the same shared library runs
on another, the breakpoint has to be active and can be hit by the wrong process.

DRAKVUF’s altp2m method is advantageous because irrelevant breakpoints can be
avoided without having to remove int3 instructions from physical memory. DRAKVUF
tracks address space/process switches by intercepting CR3 register writes like SmartVMI
but switches only the EPT view instead of changing the code. If a vCPU is switched to
one of the target processes, DRAKVUF changes the EPT for this vCPU to the version that
refers to the manipulated page frames with breakpoint instructions. For other irrelevant
processes, the unchanged EPT version that refers to the original page frames is used [9,14].

3. Benchmarking Design
While Section 2 explained the details of the different breakpoint-handling approaches,

it also included observations on how certain aspects might impact the performance of some
operations. The goal of this work is explicitly not to define a representative workload,
which measures all aspects of breakpoint overhead in a realistic scenario. Instead, we want
to be able to quantify the hyper-breakpoint overhead in the relevant aspects and be able to
compare completely different approaches as well as evaluate the effectiveness of smaller
optimizations within the same approach. We want to be able to answer questions like the
following:

• Is it faster to use instruction emulation or perform EPT switches and single-stepping?
• How expensive is it to handle reads with EPT violations and read emulations?
• What is the performance penalty for the whole system when a VM exit happens on

every context switch to manage breakpoint statuses?

We aim to measure the individual causes of overhead in isolation using specifically
targeted micro-benchmarks.

3.1. Workloads

We identify the following specialized workloads that concentrate on a single detail
of breakpoint implementation, and, when their results are put together, can provide a full
overview of the overhead a breakpoint implementation causes.

• WL1: Breakpoint execution. This workload is supposed to measure how long it
takes the VMI infrastructure to handle a breakpoint. There are a multitude of factors
that comprise this latency: VM exits, processing in the hypervisor, communication
between the hypervisor and VMI application, processing in the VMI application, and
VM entries.

• WL2: Breakpoint execution + additional instructions. Most of the approaches
introduced do not add latency to the execution of an instruction where no breakpoint
is placed. However, altp2m effectively also breakpoints all other instructions that are
on the same page as the target instruction. The previous workload does not reflect
that, so this one is supposed to measure the latency of executing the breakpoint as
well as additional instructions that are located on the same page.

• WL3: Reading the breakpoint. Using EPT permissions to control read accesses to
breakpoint locations causes overhead for similar reasons to the breakpoint executions.
This workload is designed to quantify this latency by reading from the exact memory
location where a breakpoint is placed.

• WL4: Reading a page with breakpoint. EPT read control has page-granularity, so
all mentioned approaches behave the same independently of whether exactly the
breakpoint or any address on the same page has been read. Thus, the results should
show the same trend as the previous workload. The purpose of this approach is mainly
to mimic the behavior of Microsoft’s PatchGuard.
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• WL5: CPU workload with and without CR3 monitoring. The final workload is not
concerned with breakpoints themselves. To implement process-specific breakpoints,
context switches have to be detected and handled by intercepting at every CR3 register
write. Given a CPU performance benchmark, it should be run with and without
VMI monitoring CR3 writes. The difference in performance is the minimal cost
of processing context switches with VMI. It is important to note that the chosen
benchmark most likely has an impact on the measurable overhead. Performing only
calculations will not cause any additional context switches, while repeatedly invoking
system calls, e.g., to write to a file, inevitably triggers context switches.

3.2. Implementation Considerations

All workloads have in common that they want to measure the overhead of VMI
activities. They also have in common that there can be vastly different implementations of
the same tasks. Breakpoint handling might use single-stepping or instruction emulation.
The hypervisor might be KVM or Xen. All of those details are transparent to the VMs that
are being inspected. Thus, we chose to measure the VMI performance penalties from inside
a VM, enabling comparisons of any VMI setup and breakpoint implementation. On the flip
side, this makes it impossible to quantify overheads with a finer granularity (e.g., how long
did a VM exit take, how long did an instruction emulation take).

While there are some smaller differences between realizing the benchmark in the kernel
compared to a user process, there are also differing implementation details depending on
the guest Operating System. Considering the use cases of malware analysis and intrusion
detection, as well as the prevalence of malware targeting Windows systems, we choose to
run the benchmark workloads as user-mode processes on Windows.

The five workloads are not well suited to be realized in the same benchmarking applica-
tion, because the first four require the existence of a breakpoint to measure execution or read
access of it, while WL5 does not require breakpoints but the presence of VMI CR3 write mon-
itoring. Furthermore, the CR3-overheard workload only requires the measurement of sys-
tem performance, which many already existing benchmarking applications already support.
For now, we decided to use the CPU-Z (https://www.cpuid.com/softwares/cpu-z.html,
accessed on 12 December 2024) benchmark as a reference for system performance. To
measure the latency of breakpoint executions and read accesses, we present bpbench in the
following subsection.

3.3. The bpbench Benchmarking Application

The concept of bpbench is to have a designated memory location on which the VMI
application under test places a breakpoint, which bpbench can then execute and read while
measuring execution times.

It is not suitable to have this designated location in the code segment of the program.
We have no control at which page offset the breakpoint has to be placed, which is prob-
lematic for WL2, where other instructions on the same page should be executed. Every
change in the code, compiler, and compiler flags can impact the layout. To avoid such
complications, we take full control of the page containing the breakpoint.

When bpbench starts up, it allocates one page of memory at a fixed address. While
not strictly necessary, this makes it easier for the VMI application to know where to insert
the breakpoint. We initialize the first 4095 bytes with the value 0x90, which represents the
NOP instruction (“no operation”). The 4096th byte is assigned to 0xc3, the RET instruction
(“return”). Once this page is set up, the application pauses and waits for user input, which
should only be provided once the VMI application has inserted a breakpoint at the end of
the page, on the RET instruction. Then, the benchmark workloads can be executed.

https://www.cpuid.com/softwares/cpu-z.html
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To measure the latency of a single breakpoint hit, bpbench initially takes a time stamp
using Windows’ QueryPerformanceCounter function. Then, it performs a call to the end of
the allocated page, directly to the breakpoint. The breakpoint is hit and processed, which
causes the latency that we aspire to measure. Because the original instruction was the
RET, after the breakpoint handling, the control leaves the allocated page, and continues
in the timing function. A second time stamp is taken, and the total execution time can be
calculated as the difference of the second and first time stamp. We refer to this workload as
“exec bp”.

It is important to note that we measure not only the latency of the breakpoint hit,
but additionally the execution time of a CALL instruction and potentially the time it
takes to retrieve the time stamps. These are constant overheads that apply equally to all
measurements, so while the real breakpoint latency is a bit lower than measured, comparing
the latencies of different breakpoint implementations is not affected. Furthermore, the call
instruction is cheap, especially compared to, e.g., the execution time of a VM exit. The time
stamp taking might add considerable overhead. We revisit this topic in more detail at the
end of the section.

Timing the execution of the breakpoint and of other, non-breakpoint instructions
on the same page is performed by taking a time stamp, calling the starting of the page,
executing 4095 NOPs, hitting the breakpoint, returning, taking another time stamp, and
calculating the total time (bpbench workload name: “exec page”). For the read access
workloads, bpbench performs the same time stamp taking but replaces calling to the page
with reading from the page. WL3 is realized by reading only the last byte of the page,
where the breakpoint is (“read bp”). WL4 is realized by reading the whole page, accessing
8 bytes with each access ( 4096

8 = 512 reads). We designate this workload as “read page”.
Finally, we come back to the overhead induced by acquiring the time stamps. Usually,

this is a fast operation, requiring a fast read from the Time Stamp Counter (TSC) register
that counts the cycles of the CPU since boot, followed by a few calculations. However,
depending on the hypervisor, reading the TSC register will take considerably longer if this
access is emulated. We determine this overhead by taking two time stamps in succession
without any workload in between. Subtracting the result from the measurement results
of the workloads, it is possible to estimate the pure latency of breakpoint executions and
reads with high accuracy. We refer to this reference workload, which is not mentioned in
Section 3.1 because it is bpbench-implementation-specific, as “timer”.

As a quick reference, an overview of all bpbench workloads, together with which
workload from Section 3.1 they realize, is presented in Table 2.

Table 2. An overview of the bpbench workloads.

bpbench Name Workload Measured Actions

timer - none

exec bp WL1 CALL, breakpoint hit (on RET)

exec page WL2 CALL, 4095 NOPs, breakpoint hit (on RET)

read bp WL3 1-byte read at breakpoint address

read page WL4 512 8-byte reads from page with BP, instructions for
looping

4. Initial Measurement Results
As SmartVMI’s breakpoint implementation is the only one we currently have available,

this section does not provide a full-fledged comparison of breakpoint handlers. After
documenting the testbed setup in Section 4.1, Section 4.2 presents our execute and read
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benchmark results for SmartVMI’s breakpoints, and compares it to the baseline performance
where no breakpoints are present. The overhead SmartVMI induces with monitoring CR3
write events is quantified using CPU-Z in Section 4.3.

4.1. VMI Setup

Figure 3 gives a detailed overview of the VMI setup that we used to benchmark
with bpbench. The host system runs NixOS with a Linux kernel that has a patchset
applied that adds VMI functionality to KVM. KVM works together with QEMU to host the
Windows VM that runs bpbench. QEMU is also patched in order to provide an Inter-Process
Communication (IPC) socket, which VMI applications can connect to. We use SmartVMI,
which builds upon libVMI, which is a library providing an API for VMI operations. This
way, the same VMI application can control the libVMI-supported hypervisors (Xen and
KVM). SmartVMI contains OS-specific code, e.g., to determine the currently active processes
by reading through a VM’s memory. It supports the loading of plugins, which, among
other things, can register callbacks for process start and termination events, scan through
memory, and register breakpoints. Currently, its breakpoint mechanism is not multicore-
safe (https://github.com/GDATASoftwareAG/smartvmi/issues/140#issuecomment-24
97314087, accessed on 22 December 2024), so the Windows VM was configured to use a
single vCPU only.

Figure 3. Architecture of a SmartVMI on a KVM/QEMU-based VMI setup.

The whole system is running on an Intel NUC 7. All the specifications are listed in
Table 3.

The KVM version with VMI patch v7 can be found here (https://github.com/KVM-
VMI/kvm/tree/kvmi-v7, accessed on 22 December 2024); the associated QEMU is available
here (https://github.com/KVM-VMI/qemu/tree/kvmi-v7, accessed on 22 December
2024). The SmartVMI project can be found here (https://github.com/GDATASoftwareAG/
smartvmi/, accessed on 22 December 2024). We had to make slight adaptations to the
code and published the two versions used for the following measurement results. The
first (https://github.com/lbeierlieb/smartvmi/tree/97b180438fde2a43bbedb0850aef709
2156b19cc, accessed on 22 December 2024) was used for the execute and read workloads;
the second (https://github.com/lbeierlieb/smartvmi/tree/670cf15ee6f073def77bb410f2

https://github.com/GDATASoftwareAG/smartvmi/issues/140#issuecomment-2497314087
https://github.com/GDATASoftwareAG/smartvmi/issues/140#issuecomment-2497314087
https://github.com/KVM-VMI/kvm/tree/kvmi-v7
https://github.com/KVM-VMI/kvm/tree/kvmi-v7
https://github.com/KVM-VMI/qemu/tree/kvmi-v7
https://github.com/GDATASoftwareAG/smartvmi/
https://github.com/GDATASoftwareAG/smartvmi/
https://github.com/lbeierlieb/smartvmi/tree/97b180438fde2a43bbedb0850aef7092156b19cc
https://github.com/lbeierlieb/smartvmi/tree/97b180438fde2a43bbedb0850aef7092156b19cc
https://github.com/lbeierlieb/smartvmi/tree/670cf15ee6f073def77bb410f22663829b15c5cb
https://github.com/lbeierlieb/smartvmi/tree/670cf15ee6f073def77bb410f22663829b15c5cb
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2663829b15c5cb, accessed on 22 December 2024) was used together with CPU-Z 2.13.0
(https://www.cpuid.com/downloads/cpu-z/cpu-z_2.13-en.zip, accessed on 22 December
2024) to measure CR3 monitoring overhead. The version of bpbench used in this paper
is available here (https://github.com/lbeierlieb/bpbench/tree/98f6120adc1661301a4c3
b3bd6bd9d6572494fdb, accessed on 22 December 2024). It contains a nix flake that can
reproducibly generate an ISO file with the bpbench and CPU-Z executable for easy insertion
into a VM.

Table 3. Hardware specifications and software versions of the VMI setup.

Category Host VM

CPU Intel Core i5 7300U 1 vCPU
RAM 2x4 GB DDR4 4 GB

OS NixOS 24.05 Windows 10 Pro 22H2,
Kernel version 5.4.24 1 Build 19045.2965

Other software QEMU 4.2.1 1 bpbench
SmartVMI CPU-Z 2.13.0

1 Patches applied to add VMI functionality.

The next subsections present the measurement results. All of the raw data, plotting
scripts, and plots can be found here (https://github.com/lbeierlieb/bpbench_results/tree/
758d6f1ed9548529038c681729d66378b5e84753, accessed on 22 December 2024).

4.2. Breakpoint Execution and Reading

This subsection presents the measurements performed with bpbench, i.e., executing
and reading the breakpoint. An overview of the five bpbench workloads and what they
consist of is available in Table 2.

Before we look at any measurements, especially of very short durations, it is important
to clarify the resolution of the utilized timer. bpbench queries the frequency of the timer
used by QueryPerformanceCounter and provides it to the user. In the VM in our setup,
the frequency is around 3.58 MHz (3,579,545 Hz), which results in a timer resolution of
279.37 ns. When measured durations are around the same order of magnitude as the
timer resolution, the discrete steps become clearly visible. Figure 4 shows the results of
running bpbench without an inserted breakpoint and the previously mentioned fact is
clearly visible.

The figure shows a box-plot of the measured latencies. The bounds of the box show
the InterQuartile Range (IQR), which encloses the middle 50% of the data. The orange
line inside the box represents the median, whose value is also noted right of the line. The
“whiskers” extend from the box to the smallest and largest values within 1.5 times the IQR.
Any values outside of this range are considered outliers and plotted individually. In all the
shown box-plots, there are more outliers that are not shown because they are many orders
of magnitudes larger, and result from interrupts or context switches pausing bpbench’s
execution. However, all measurements were used to calculate the IQR and median; the
large outliers are just not rendered in the plot.

Looking at the actual measurements, it makes sense to start with the results for the
timer. These represent the time passed between taking two time stamps as fast as possible.
The majority of data points are either 3911 ns or 4190 ns, which represent 14 and 15 timer
ticks, respectively. This is a fairly long time for accessing the timer and indicates that the
access is emulated by the hypervisor. Also, this measurement establishes that around 4 µs
is the overhead induced by accessing the time stamps, and it can be used as a correction
offset to calculate the actual latencies of other workloads. Note that none of the plots have
this correction applied and always show the actual measured durations.

https://github.com/lbeierlieb/smartvmi/tree/670cf15ee6f073def77bb410f22663829b15c5cb
https://github.com/lbeierlieb/smartvmi/tree/670cf15ee6f073def77bb410f22663829b15c5cb
https://github.com/lbeierlieb/smartvmi/tree/670cf15ee6f073def77bb410f22663829b15c5cb
https://www.cpuid.com/downloads/cpu-z/cpu-z_2.13-en.zip
https://github.com/lbeierlieb/bpbench/tree/98f6120adc1661301a4c3b3bd6bd9d6572494fdb
https://github.com/lbeierlieb/bpbench/tree/98f6120adc1661301a4c3b3bd6bd9d6572494fdb
https://github.com/lbeierlieb/bpbench_results/tree/758d6f1ed9548529038c681729d66378b5e84753
https://github.com/lbeierlieb/bpbench_results/tree/758d6f1ed9548529038c681729d66378b5e84753
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Figure 4. Box-plot of the breakpoint execute and read workloads with no breakpoint set.

The workload “exec bp” without breakpoint measures the execution time of one
CALL and one RET instruction, which, assuming the necessary memory is cached, can be
executed in a few CPU clock cycles, i.e., a few nanoseconds. Accordingly, the plot is nearly
identical; the lower median value can again be explained by the resolution of the timer
and the duration of the timer access, which induce randomness whether 14 or 15 clock
ticks are measured between two timer accesses. “exec page” has 4095 additional NOPs to
execute, which are slightly noticeable in the majority of times showing 15 or 16 clock ticks.
“read byte” reads only a single byte between the timer accesses; thus, its plotted box looks
identical to “timer” and “exec bp”. Finally, “read page” measures the time to read 8 bytes
from the breakpoint page 512 times. The majority of times, this happens in 22 timer ticks
(6146 ns). Subtracting the timer offset, this equates to around 2 µs for 512 reads or around
4 ns per read.

We established that around 4 µs can be assumed as timer overhead, the “read page”
page workload takes around 2 µs on its own, and the other workloads are basically negligi-
ble, especially considering the timer resolution.

Figures 5 and 6 present the bpbench measurements when SmartVMI has inserted a
breakpoint at the designated memory address. The reference “timer” workload is unaf-
fected by the breakpoint. Our main motivation to implement bpbench was to determine the
execution times for the “exec bp” workload: to finally quantify how expensive SmartVMI’s
breakpoints are. Now, the answer is available: subtracting timer overhead, a breakpoint
hit takes around 81 µs on our Intel NUC test system. As expected, the results are not
much different for “exec page”, as the breakpoint does not cause extra penalties on the
NOP instructions. For reading the byte at the breakpoint, the measurements show that it
is significantly cheaper than executing the breakpoint, clocking in at around 21 µs. This
aligns with the fact that the breakpoint handling requires two VM exits and multiple com-
munications between SmartVMI and KVM, whereas the read causes only a single VM exit
and a read emulation. However, performing 512 accesses to read a whole page, with each
access causing a VM exit and requiring an emulation, the whole workload takes a median
duration of around 22.5 ms. Assuming single-byte reads take the same amount of time
as 8-byte reads, we can estimate 512 ∗ 21 µs ≈ 10.8 ms. A plausible explanation for the
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gap between the theoretical duration and the measured median is that in the at least 10 ms
execution time the workloads require, there is a considerable likelihood for interrupts and
scheduling of other processes to take up CPU time and temporarily prevent progress in the
page read.
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Figure 5. Box-plot of the breakpoint execute and read (read page excluded) workloads with a
breakpoint set.
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Figure 6. Box-plot of the breakpoint read page workload with a breakpoint set.

4.3. CR3 Write Monitoring

We ran the CPU benchmark of CPU-Z once without VMI active to retrieve the reference
score, which the single vCPU is able to achieve. The score amounted to 334.7 points. Then,
SmartVMI was activated. It did not place any breakpoints, but enabled KVM to inform
it on every CR3 write. The registered callback function was empty; no additional code
was executed. Running the CPU-Z benchmark under these conditions, the achieved score
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reduced to 259.9 points. This amounts to a performance reduction of 22.4%. The results are
also displayed in Figure 7.
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Figure 7. CPU-Z benchmark performance with and without CR3 monitoring.

5. Related Work
A “goto reference” for breakpoint performance is the paper “Efficient Data Break-

points” by Robert Wahbe [19]. It explores methods for implementing data breakpoints,
which trigger actions when specific data changes occur during program execution. While
specialized hardware provides fast performance, it is costly and limited in scalability. Vir-
tual memory-based methods, using write protection and fault handling, are portable but
incur high overhead. Software approaches, particularly code patching, which embeds
checks directly in program code, offer a balance of efficiency, portability, and flexibility,
handling unlimited breakpoints. Simulation experiments showed code patching as the
most practical solution, with acceptable performance and versatility, making it ideal for
complex debugging tasks without requiring specialized hardware.

The authors expanded on their work in [20]. It addresses the inefficiency of traditional
data breakpoints by proposing optimized methods for debugging. The authors introduce
a segmented bitmap structure to track memory updates efficiently and data flow analy-
sis to eliminate unnecessary checks, reducing overhead significantly. These techniques
achieved a 42% average overhead, dropping to 25% for scientific workloads, making data
breakpoints practical. Using dynamic code patching and loop optimizations, the system
further improved performance, outperforming traditional and hardware-based methods.
The approach enables efficient debugging and supports advanced applications like runtime
type checking and anomaly detection.

Regarding breakpoint handling in the context of malware sandboxes, intrusion detec-
tion and the often necessary stealthiness, Vasudevan and Yerraballi present VAMPiRE [21],
a stealth breakpoint framework designed for fine-grained malware analysis. Traditional
debugging mechanisms, such as hardware and software breakpoints, face significant limi-
tations when analyzing self-modifying and self-checking malware. VAMPiRE overcomes
these challenges by employing stealth techniques, combining virtual memory manipula-
tions, single-stepping, and Task State Segments. Its features include unlimited breakpoints,
undetectability to the target code, portability, and ease of integration via a simple API.
The framework achieves its stealth through clock patches, virtual trap-flag management,
and polymorphic/metamorphic engine techniques, ensuring that malware cannot detect
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its presence. Performance benchmarks show that VAMPiRE’s latency is comparable to
hardware breakpoints, making it suitable for interactive debugging. However, VAMPIRE
has two shortcomings. It currently lacks support for legacy I/O breakpoints in kernel
mode, which limits its scope for certain debugging scenarios. Also, while VAMPiRE itself is
stealthy, integration into existing debuggers may expose the debugging activity to malware.

VAMPiRE operates at the level of commodity Operating Systems (e.g., Windows,
Linux) and relies on features like virtual memory, single-stepping, and exception handlers
within the OS’s context. Hypervisor-level debugging requires awareness and manipulation
of virtualization-specific constructs like VMCS (Virtual Machine Control Structure) or
hypervisor traps, which VAMPiRE does not address.

When focusing on hyper-breakpoints, like our work, CXPInspector by Willems et al. [5]
is worth mentioning. It showcases hypervisor-based, hardware-assisted monitoring for
advanced malware analysis in the form of their prototype CXPInspector. They use two-
dimensional paging for memory isolation and monitor transitions between user and kernel
modules. Through this, the authors are able to perform static, dynamic, and behavior anal-
ysis. However, they suffer significant performance overhead and still lack sophisticated
analysis systems that support their method. Furthermore, they indicate that their kind of
monitoring can still be detected by intelligent malware.

It is obvious that most of the relevant works are rather old. However, with the
continuing trend of virtualizing everything, we make the case that it is necessary to continue
in the direction of the research.

6. Conclusions
This section concludes this paper. In Section 6.1, we summarize the main takeaways

from the paper, before we give an outlook into planned and potential future work in
Section 6.2.

6.1. Summary and Discussion

In this work, we gave an overview and categorization of existing approaches of han-
dling, hiding, and optimizing VMI breakpoints. Based on the findings, we proposed
micro-benchmark workloads to quantify the execute and read performance of breakpoints,
as well as the overhead induced by monitoring context switches. While we do not have
working implementations of each approach available for testing, we provided the measure-
ment results for the SmartVMI breakpoint implementation working together with KVM
and QEMU. We measured that it takes 81 µs to process a breakpoint hit and 21 µs per read
to a page where a breakpoint is hidden, and that intercepting CR3 write events costs the
vCPU around 22% of performance.

In Section 3, we stated open questions, which bpbench is supposed to answer. We will
revisit them now and check bpbench’s suitability to answer them.

Is it faster to use instruction emulation or perform EPT switches and single-
stepping? We are not able to answer this question in this paper, because neither approach
is currently implemented in SmartVMI, and bpbench was the first step towards starting
their realizations, allowing us to keep track of performance during development. We do
provide measurements for SmartVMI’s current breakpoint approach, demonstrating the
possibility of also providing measurements for future implementations.

How expensive is it to handle reads with EPT violations and read emulations?
SmartVMI uses exactly this approach to hide its breakpoints; thus, we can answer this for
the utilized hardware: 21 µs per read.
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What is the performance penalty for the whole system when a VM exit happens on
every context switch to manage breakpoint statuses? Again, we can answer this for the
tested hardware and workload (CPU-Z): system performance is reduced by around 22%.

6.2. Future Work

The work presented in this paper is a strong foundation that enables a lot of follow-up
research. Most notably, our need for bpbench’s functionality came from the fact that we
needed quantitative feedback to aid in the development of efficient VMI breakpoints. Thus,
the next step is now to implement some or all breakpoint-handling approaches discussed
in Section 2, and use bpbench to assess their performance.

Another interesting research topic is the impact of the hypervisor. Instead of using
the same hypervisor and comparing different breakpoint approaches implemented in
SmartVMI, the abstract of libvmi allows us to instead use the same SmartVMI configuration
with different hypervisors (i.e., Xen and KVM) and measure if performance differences
exist between them.

There are considerations in implementing another workload into bpbench, which is
not concerned with performance, but is supposed to test the robustness of breakpoint-
handling implementations. A big challenge is to keep breakpoints active even when the VM
is performing memory management operations, e.g., when a page containing a breakpoint
is evicted from RAM. Usually, because code packages are not writeable, their memory
contents are not written to swap but reloaded from a disc when demand arises. Even if
they were paged out, the breakpoints’ stealthiness would prevent their state from being
preserved. Additionally, when reloaded, the page might be placed at a different GPA. If the
breakpoint mechanism is not very thorough with checking this, breakpoints can disappear.
It would be beneficial to have a workload test for exact cases and rate the robustness of the
breakpoint implementation under test.

Finally, we want to improve the situation of VMI infrastructure deployment. Manually
configuring a system with the right kernel, with KVM-VMI patches applied, and compiling
the right versions of patched QEMU and SmartVMI tedious endeavors involving many
steps and dependencies. We aim to provide nix packaging to provide reproducible and
easy-to-deploy VMI infrastructure based on KVM.
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