Numerical examinations of energy absorption in simplified spondylodesis models
- A simplified model for spondylodesis, ie fixation of vertebrae by osteosynthesis, is developed for virtual magnetic resonance imaging (MRI) examinations to numerically calculate energy absorption. This paper presents results of calculated energy absorption in body tissue surrounding titanium rod implants. In general each wire or rod behaves like an antenna in electromagnetic fields. The specific absorption rate (SAR) profile describes dependence of implant size. SAR hotspots appear near the rod edges. Depending of the size of implant fixation SAR is 62%(small fixation) up to 90.95%(large fixation) higher than without implants. In addition, local SAR profile displays local dependency on tissue: SAR is lower between the vertebrae.