
Maxon16: A Successful Power TAC Broker

Tobias Urban1 and Wolfram Conen2

1 Institute for Internet Security
Westphalian University of Applied Sciences

urban@internet-sicherheit.de
2 Westphalian University of Applied Sciences

Department of Computer Science and Communication
wolfram.conen@w-hs.de

Abstract. Renewable and sustainable energy production by many small
and distributed producers is revolutionizing the energy landscape as we
know it. Consumers produce energy, making them to prosumers in the
smart grid. The interaction between prosumers and other entities in the
grid and the optimal utilization of new smart grid components (elec-
tric cars, freezers, solar panels, etc.) are crucial for the success of the
smart grid. The Power Trading Agent Competition is an open simula-
tion platform that allows researchers to conduct low risk studies in this
new energy market. In this work we present Maxon16, an autonomous
energy broker and champion of the 2016’s Power Trading Agent Compe-
tition. We present the strategies the broker used in the final round and
evaluate the effectiveness of the strategies by analyzing the tournaments
results.

Keywords: Autonomous Agents, Smart Grid, Artificial Intelligence,
Multi-Agent System, Machine Learning

1 Introduction

The shift from large energy producers to small and distributed producers is
leading to new challenges that need to be addressed. An important part of this
energy revolution is the production of energy from renewable and sustainable
sources (for example wind or water). The biggest challenges in this context are
that on the one hand, most producers cannot produce energy on demand, and
on the other hand it is desirable to store the produced energy efficiently. This
leads to the transformation of the traditional energy grid to a ‘smart grid’. In
Europe [13] and other parts of the world [10][4], governments are implementing
legislation to promote the extension of smart grids. Smart grids offer opportu-
nities for new business models (e.g. [7]) but also come with some risks [6]. An
important feature of the smart grid is that small, local producers (e.g. solar pan-
els on a roof top) can sell their energy using brokers as intermediairies [17]. An
interesting research topic for the AI community is to implement such brokers as
autonomous agents [14].
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The Power Trading Agent Competition [8] (Power TAC) (see Section 2) is a de-
tailed and realistic simulation of a smart grid environment. Within Power TAC,
autonomous agents compete against each other trying to maximize their own
profits. One of those brokers, Maxon16 the champion of the 2016’s tournament
(see Section 3, is introduced in Section 4. We conclude the paper by giving a
brief overview of existing work in the Power TAC environment (see Section 6)
and by discussing possible future work (see Section 5).
The main contributions of this paper are:

– We give a detailed overview of Maxon16, the winning agent of 2016’s Power
TAC. We analyze the performance of the broker in the final round of the
tournament and describe the decision making of the broker.

– We provide a brief overview of the final round of the 2016’s Power TAC.

2 Power TAC

The Power TAC is a competitive simulation of a modern energy market. Within
the competition, different brokers try to maximize their profits by buying energy
on the wholesale market and selling energy on the retail market (by offering
tariffs). A typical simulation runs for approximately two simulated months. Each
day in the simulation is represented by 24 different timeslots which represent
the hours of the day. Each timeslot is five seconds long (‘real world time’) which
results in a total simulation time of almost two hours. Each simulation takes place
in a different city and uses its real weather data. Different customer models are
used to represent a realistic set of entities that could occur in the future energy
market. These customers include devices to store energy (e.g. electric cars and
thermal storages), small consumers (e.g. households and small offices), large
consumers (e.g. medical centers and office complexes), and local producers (e.g.
solar and wind). Each customer supports hourly metering of their consumption
and production. Brokers can buy energy at any time on a wholesale market,
which is modeled as a simple call market. Divergent from real world energy
markets, the wholesale market is implemented for a single region only. On the
wholesale market, large and small producers (e.g. wind parks) offer energy to the
competing brokers. The market is modeled as day-ahead market which means
that brokers can buy or sell energy at most one day ahead (24h) of the actual time
when the energy is needed. In an energy grid the demand and supply must be in
balance at all times. In Power TAC, this is guaranteed by the Distribution Unit
(the owner of the local grid). If a broker’s demand and supply are not in balance
the Distribution Unit will charge the broker, if his balance has negative impact
on the overall balance (e.g. the broker has a negative balance and the overall
balance is also negative). A broker is paid if its imbalance has a positive impact
on the overall imbalance in the grid (e.g. the broker has a positive imbalance
and the overall imbalance is negative). The capacity of modern transmission
networks is driven by the peak demands. Due to this fact, it seems plausible
to charge brokers for their contribution to these peak demands. In Power TAC,
peak demands have to be paid in retrospect for the previous two weeks. Thus,
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Fig. 1. Main components in Power TAC (borrowed from [8]).

Table 1. Final score of the 2016’s Power TAC final round.

Broker Game Size 7 Game Size 5 Game Size 3 Norm. Score

1 Maxon16 1.42 1.42 0.63 3.47
2 COLDPower 0.67 0.68 -0.1 1.26
3 AgentUDE 0.54 0.30 -0.1 0.75
4 SPOT 0.08 0.185 -0.32 -0.07
5 Mertacor 0.08 -0.04 -0.79 -0.75
6 AgentCU -0.96 -0.61 -0.07 -1.64
7 CrocodileAgent -1.82 -2.01 -2.41 -6.24

once every two weeks the broker has to pay for its contribution to the peaks in
the last two weeks. On the retail market, brokers can offer different tariffs to
which the customers can subscribe to. The main components of the simulation
are displayed in Fig. 1.
In general, each broker has three main tasks: (1) Buying and selling energy on
the wholesale market, (2) balancing the demand and supply for their customers,
and (3) offering tariffs to the customers.

3 Power TAC 2016’s final round

The Power TAC 2016 final round was played in three different game sizes: 7
brokers (29 games), 5 brokers (64 games), and 3 brokers (104 games). The final
scoreboard of the 2016’s final round is shown in Table 3. The scores are the
normalized profit (z-scores) each broker made in each game size. In total, 8
brokers competed in the final round. Maxon16 outperformed every other broker,
in every game size, by a distinct margin. The broker Mertacor had connection
problems and disconnected from most of his games within the first minutes of
the simulation.

All statistic provided in this paper are extracted from the official log files of
the final round3.

3 http://ts.powertac.org/log_archive/finals_2016_06/

http://ts.powertac.org/log_archive/finals_2016_06/
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Fig. 2. Overall results of the 2016’s Power TAC for different games sizes.

Fig. 2 gives a more detailed overview of the tournament. In the largest games
(game size 7) the agent COLDPower made the most revenue on the retail market
but only made little overall profit in this game size. It is notable that Maxon16,
CrocodileAgent, and AgentUDE made almost the same revenue on the retail
market but only Maxon16 was able to make a decent profit from this revenue.
The overall costs of Maxon16, in this game size, were small compared to the
other brokers. In smaller game sizes (game size 3 and 5) Maxon16 made the
most revenue on the tariff market while keeping the costs to produce this higher
revenue almost equal to other broker who made less revenue. Thus, Maxon16
made the most profit in these game sizes.

4 Maxon16

In this section, we give a detailed description of Maxon16, the winning agent of
the Power TAC 2016 tournament. In the subsections of this section, we focus on
the three main tasks the broker has to perform (retail market trading, wholesale
market trading, and balancing).

4.1 Retail Market

In the retail market, we use four different consumption tariff types: (1) time-
of-use tariffs (TOU), (2) tiered tariffs, (3) flat tariffs, and (4) interruptible con-
sumption tariffs. TOU tariffs have different pricing periods during the day (see
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Fig. 3. Tiered (on the left) and TOU tariffs (on the right) used by Maxon16 in the
2016’s Power TAC final round. Tiered tariffs use different usage thresholds (the green,
yellow, and red lines) to determine different prices if customers use more than a certain
amount of energy. TOU tariffs offer different prices at different times of a day.

Fig. 3). Tiered tariffs consist of different tiers which charge different pricings
based on the customer’s usage (see Fig. 3). A flat tariff consists of a uniform
rate for each used kWh. The last tariff type, an interruptible consumption tariff,
is offered to devices that can, to some extent, be controlled by the broker or, on
behalf of the broker, by the Distribution Unit.
Maxon16 uses tiered and TOU tariffs to flatten peak demands by rewarding cus-
tomers if they alter their usage behavior. TOU tariffs, published by Maxon16,
offer cheaper rates at times when no peak is expected and tiered tariffs reward
customers if they distribute their consumption over the day. Flat tariffs are of-
fered to customer models who cannot, or do not want to, alter their behavior
(e.g. a medical center). Controllable devices are used to avoid participation in
high demand peaks by down regulating those devices when a demand peak is
expected.
Maxon16 uses the bootstrap usage data (usage data from all customers two weeks
prior to the start of the simulation when prices for energy are relatively high and
only flat tariffs are offered by a default agent) to identify the customer’s usual
behavior. We assume that customers will not change their usual behavior during
the game if they are not rewarded for doing so, implying that users will change
their behavior if they can expect a reward (e.g. a lower price). We design our
TOU tariffs not directly by prices that the broker has to pay for the needed en-
ergy (like approaches in [2] or [3]), but rather by the times of peak demands that
we learned from the bootstrap usage data. Alg. 1 shows the procedure that is
used to generate the TOU tariffs. The algorithm uses the aggregated bootstrap
usage data of all customer models (B), the baseline price pb and two scaling
factors which scale the prices of the maximum and minimum demands. We use a
simple hill climbing algorithm to determine the local maxima and minima of the
usage data. Each extremum µ consists of two values µv, the usage value of the
extremum, and µt, the time of day when the extremum occurred. For all the ex-
trema, Maxon16 computes a price that is used at that time of the day. The price
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Algorithm 1: Time-of-use tariff generation

input : The bootstrap data B, the baseline price pb, and two scaling factors
(αmax, αmin)

output: The TOU tariff
1 localMinima = HillClimbingAlgorithmMin(B);
2 localMaxima = HillClimbingAlgorithmMax(B);
3 globalMax = max(B); globalMin = min(B);
4 Tariff t;
5 forall the localMaxima µ do
6 pµ = pb · µv·αmax

globalMax
; timeSpan =[µt−1, µt+1];

7 t.addRate(pµ, timeSpan);

8 forall the localMinima µ do
9 pµ = pb · µv·αmin

globalMin
; timeSpan = [µt−1, µt+1];

10 t.addRate(pµ, timeSpan);

11 forall the remaining times t do
12 timeSpan = {t};
13 t.addRate(pb, timeSpan);

14 cleanRates(t, localMaxima, localMinima);
15 return t

depends on the actual value of the extrema so that large extrema offer a higher
reward or penalty respectively. On one hand, Maxon16 does this because the hill
climbing algorithm may identify insignificant local extrema (e.g. at 2am), and on
the other hand, because a higher penalty/reward will increase the motivation of
customers to change the behavior. Note that p < pb for minima and pµ > pb for
maxima apply to a rate during the span of one hour both before and after the
occurrence of an extremum (µ) (e.g. µt = 12→ span= [11, 13]). This is done so
that customers actually have to shift their usage away from the demand peaks,
rather than just move it by one hour. All times of the day that are not adjacent
to an extremum use the baseline price pb. In a last step, we clean up the overlap-
ping rates which occur if there is a local minimum close to a local maximum. In
this case, we use the higher rate (local maximum) and shorten the applicability
of the cheaper rate (local minimum). The baseline price is computed by using
the costs the broker had to pay for each kWh during the last two weeks (168
timeslots):

pb = Production168 + Clearing168 + Imbalance168 +
meterFee

12
+ margin (1)

In the first two weeks of a game, Maxon16 uses heuristic values (for the imbalance,
production, and clearing prices) we computed from the seeding and qualification
round prior to the final round of 2016’s Power TAC tournament.
We intentionally do not use the costs for peak demands to compute the broker’s
costs per kWh because they vary drastically and are not controllable by the bro-
ker. For example if the customers of other brokers cause a big peak demand our
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broker’s customers also contribute to this peak. Even if it is a small contribution
there will be some peak demand costs for our broker. These costs are covered by
the margin we add to our price per kWh.
In order to compute the thresholds for the tiered tariffs, we utilize the usage data
of one specific customer group which represents 20,000 different households. In
total there are 57,512 customers. We use this customer group because they can
adjust their usage and they have a similar usage profile (they use slightly more
energy) to another big group of customers (30,000 customers) who can adjust
their usage profile as well. We assume again that the customers won’t change
their behavior (that is captured in the bootstrap data) if they do not expect any
reward. Therefore, we never update these values because we expect the updated
values to be biased based on the tariffs we offer. The threshold of each tier is
computed using different quantiles of the usage data. In total, we use four dif-
ferent tiers: (1) 0-17%, (2) 17-50%, (3) 50-63%, and (4) 63-100%. We use our
baseline price pb for the second tier. Tier one, three and four prices were 7%
below, 7% above and 14% above, respectively.
In addition to these two tariff types, we also use a simple flat tariff which uses
a rate that is slightly above our computed baseline price. We used this tar-
iff because there are some customers that will not change their behavior and
therefore our other tariffs are not attractive to them. The different parameters
(αmin, αmax and the quantile thresholds) which are used to compute the tariffs
have been chosen heuristically playing 100 games against the sample broker. We
tested how many customers choose the TOU or tiered tariff over the simple flat
tariff. We’ve chosen the parameters in a way that around 70% of the customers
subscribe either to the TOU or tiered tariff.
Additionally, we offer tariffs for controllable devices (e.g. the battery of an elec-
tric car). The main purpose of this tariff is to offer balancing capacities to the
Distribution Unit. For example, the broker can offer to up-regulate a device,
resulting in the usage increase of the device, which can be utilized if there is an
overall surplus of energy in the grid. If needed, the Distribution Unit can use
these offered capacities to keep the grid in balance, and pays the broker or gets
paid by the broker respectively. Some controllable devices also allow the broker
to economically control their devices (e.g. decreasing the cooling in a freezer). By
using this the broker can avoid participation in predicted peak demands since
energy usage of the broker’s customers is reduced. Maxon16 only executes eco-
nomic controls if a demand peak is expected.
Controllable devices split up into two types: (1) storage devices and (2) inter-
ruptible consumption. We offer simple flat tariffs to both of these types. For
storage devices, we use a price that is only a fraction (33.33%) of our computed
baseline price. We did this because we aggressively wanted to get those cus-
tomers in order to use the balancing control features of these devices even if we
lose some money for each kWh these devices use. Note that the usage of these
devices is strongly influenced by the issued balancing orders (the device doesn’t
have to charge its battery if it was charged previously by a balancing order). In-
terruptible consumption tariffs are, compared to storage customers, less valuable
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Algorithm 2: Maxon16’s tariff improvement strategy

input : The usage data D, a price baseline pb, all competing consumption
tariffs CT

output: The computed new price baseline pn
1 bestCompetingUtility = min(utilityOfAll(CT , D));
2 maxonUtil = ∞;
3 λ = 2;
4 while maxonUtil · 0.95 ≥ bestCompetingUtility do
5 pn = λ · pb;
6 maxonUtil = utility(pn, D);
7 λ = λ− 0.001;

8 if maxonUtil · 0.95 ≤ bestCompetingUtility then
9 return pn

since they cannot be used to store energy. As the name states, the consumption
of those devices can only be curtailed for a given timeslot. Thus, we do not fight
very aggressively for these customers and offer tariffs with rates that are only
slightly under our computed baseline price, around 90% of the computed value.
The developed broker also publishes production tariffs, which aim at small and
medium sized customers that produce energy (e.g. solar panels on the rooftop
of houses). The energy bought on the retail market can either be sold on the
wholesale market or used to balance the demand of the broker’s other customers.
We used our predicted price of the wholesale market (see Section 4.3) as upper
price limit in those tariffs.

Tariff improvement The broker’s general strategy is to start with relatively ex-
pensive initial tariffs (about 20% above the computed baseline) and get cheaper
if these tariffs do not perform well.
We measured the success of our tariff set by our market share on the energy
market. This share (of the previous timeslot) is computed as follows:

share(t− 1) =
Ebought(t− 1)− Ebalance(t− 1) + Eproduced(t− 1)∑

C(t− 1)−
∑
B(t− 1)

(2)

with Ebought representing the energy bought for a specific timeslot, Ebalance the
energy balance of our broker, Eproduced the energy produced by the customers,∑
C the total consumption in the grid and

∑
B the overall balance of the grid.

All these values are taken from the previous timeslot. We compute a threshold
t which is based on the number of brokers in the current game. If the current
market share is below this threshold, we test if we can publish tariffs that might
be more successful than our current tariff set.
We compute the costs of a tariff from the customers’ point of view (i.e. in this
case the price that the customer has to pay if the customer subscribes to a tariff).
In order to compute the costs of a tariff we compute the total price a customer
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has to pay for a given tariff and the customers’ usage data. Since we compute
the costs from the customers’ point of view, lower costs are desirable.
The improvement of our tariffs is shown in Alg. 2. First we compute the best
(lowest) costs of all competing consumption tariffs. We then continuously lower
our price until they are at least 5% lower than the best competing tariff. Fi-
nally, we check if our costs are only 5% above the best competing tariff at most
(notice the switched relation sign); if so, we return the determined price and
publish new tariffs with this base price. We would publish a tariff that is slightly
more expensive than the best competing tariff because we hope that at least
some customers will subscribe to our newly published tariffs. The broker always
publishes three tariffs (one TOU, tiered and flat tariff) based on the computed
price whenever Maxon16 publishes tariffs.
At this stage the broker’s utility() function only considers flat tariffs. We only
consider flat tariffs because the cost computation is straight forward. When cus-
tomers evaluate TOU and tier tariffs, in the Power TAC environment, they use
a risk-adjusted estimate of the expected costs which influences the possibility of
them subscribing to TOU and tiered tariffs negatively (from the broker’s point
of view). Since all customers use different, non-public ‘risk adjustment’ values
we do not take these into consideration. We use a similar approach to improve
our production tariffs.
Maxon16 and ColdPower were the only brokers that offered non-flat tariffs (tiered
and TOU tariffs). Maxon16’s tariffs seem to be attractive to medium sized cus-
tomers (in terms of energy usage - note the ‘meter fee’ in Fig. 1). Other brokers
(e.g.COLDPower) get more customers (in terms of meters) but these customers
seem to be less profitable. The medium sized customers seem to be attracted
to the possible benefits of shifting their behavior while smaller households (e.g.
households) have doubts towards these kind of tariffs. We believe that Maxon16’s
tariff strategy is the main reason for the broker’s success.

4.2 Balance Market

Predicting needed energy is an important part of each brokers tasks because it
determines the amount of energy the broker needs for his customers and how
much the production customers will produce. At the same time, in Power TAC,
this is extremely challenging due to the high number of uncontrollable factors
and events that affect the actual usage of the customers. Some of these factors
are the weather, new subscriptions or withdraws from tariffs, or the fact that
customers change their behavior based on the tariff they are subscribed to. In
addition, only very little information about the customers usage is known to
the broker: the bootstrap data only consist of two weeks of usage data for each
customer. Thus, only two usage values are known to the broker at the beginning
of the game for each time of day.
Maxon16 uses a multiple linear regression model to predict the amount of needed
energy. We do not compute the usage for all our customers at the same time but
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Fig. 4. Overall summed absolute imbalance for the three different game sizes.

for each customer group. We compute the needed energy as follows:

u(t+ n) := E(t+ n)︸ ︷︷ ︸
Arith. mean

+Λ(v, v − 1, v − 2)︸ ︷︷ ︸
Trend at time of day

+Ψ(t, t− 1, t− 2)︸ ︷︷ ︸
Trend for this day

(3)

with E(t+n) representing the arithmetical mean value for a specific time of day.
Λ(v, v − 1, v − 2) a linear function that uses difference of the actual usage and
the arithmetical mean of the most recent three usage values prior to this time
of the day. Ψ(t, t − 1, t − 2) a linear function that uses the weighted difference
between the most recent three predictions and the actual usage of the customer
at those times. The parameters of the linear functions (Λ and Ψ) were optimized
using usage values from 100 games played. In essence, u(t+ n) tries to compute
the deviation between the arithmetical mean value and actual value based on
the last seen usages.
Even though our approach is not complex it seems to perform quite well in
comparison to the forecast of other brokers (if the judgment is based on the ob-
servable imbalance stats of the brokers). Fig. 4 shows the absolute imbalances,
summed over all games in the final round, for all brokers in each game size.
Maxon16 performs significantly better than two other brokers (COLDPower and
AgentCU). The brokers SPOT and default broker’ seem to have nearly zero imbal-
ance which indicates that they may have traded very little energy throughout
the tournament. CrocodileAgent performs almost equally to Maxon16. Note that
the imbalance is of course not only influenced by the prediction performance,
but also by the success of the broker when he tries to buy and/or sell needed or
superfluous energy on the wholesale market (and, to an extent neglectable for
the 2016 competition, by executing economic controls).
Another aspect on the balancing market are balancing orders. A broker can offer
a balancing order to the Distribution Unit allowing the Distribution Unit to use
controllable devices contracted by the broker to balance the grid. Fig. 5 shows
the use of controllable devices aggregated over all games. Only Maxon16 and
AgentUDE offered, successfully, balancing orders. Due to our aggressive strategy
(mentioned in Section 4.1) we were able to successfully create a monopole for
these devices, only the agent AgentUDE got very few controllable devices at the
beginning of some games. Note that these values do not affect the broker’s im-
balance stats; rather, balancing orders are used if there is an imbalance in the
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Fig. 5. Balancing orders across the three games sizes of the 2016’s final round

Fig. 6. Cleared bids and asks on the overall wholesale market and for Maxon16.

grid. Over the course of all games, Maxon16 made 15mio EUR revenue by issuing
balancing orders.

4.3 Wholesale Market

On the wholesale market, Maxon16 played a defensive strategy. The idea is to buy
the needed energy as early as possible (24 hours ahead). Rather than submitting
one huge order, Maxon16 splits the order into multiple smaller orders at different
price levels. The intention is to buy the energy at a low price, if the market
allows it, but to still get a significant amount of the needed energy if the market
prices, for the given time slot, are high. If the broker does not get the needed
energy the price limit is increased, based on the last clearing prices, up to a
level until it is cheaper to run into balance. The broker only sells energy if he is
absolutely confident that he doesn’t need it. This case occurs basically never.
In retrospective, it was wise to play a defensive strategy on the wholesale market
because at least one broker tried to monopolize the market by buying huge
amounts of energy. Because of that monopole some brokers had to buy energy
at very high prices. The left hand graph of Fig. 6 shows the activities on the
wholesale market over the course of the tournament. Note that the prices of the
traded energy increases while the amounts of traded energy decrease. The right
hand graph of Fig. 6 displays the activities of Maxon16 on the wholesale market.
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The defensive strategy of splitting the needed energy worked quite well. Most
of the times the broker was able to buy the needed energy early at moderate
prices.
This defensive strategy would probably work well against most strategies on
the wholesale market (in terms of getting most of the energy Maxon16 needs
at a reasonable price). Maxon16 does not make any money on the wholesale
market and does not perform substantially better than other brokers (in terms of
money paid for energy). Since Maxon16 buys the needed energy early, in multiple
chunks and at different price levels, the opponents strategy needs to be very
sophisticated to block Maxon16 from getting the needed energy (e.g. by buying
huge amounts at high prices and reselling it to Maxon16 at higher prices that
Maxon16 is still willing to pay). Note that if a broker buys a huge amount of
energy, the expected balance costs will be low because there is probably a surplus
of energy in the grid. In that case the Distribution Unit charges brokers that
contribute to this surplus and pays brokers that do not. If there is no surplus of
energy, Maxon16 would most likely get most of the needed energy because the
market usually provided energy at a price that is reasonable enough.

5 Future Work & Conclusion

Maxon16 is an efficient and successful energy broker, nevertheless further im-
provement is needed prior to the next Power TAC. The highest priority is to
develop an adaptive wholesale strategy that can dynamically adjust to the mar-
ket situation. Another important issue is the usage of more controllable devices
in combination with the prediction of needed energy. We have shown that the
usage of controllable devices has a significant impact in the grid. However, our
current approach is relatively simple and can be further tuned in various ways.
One approach could be to predict the expected imbalance for a timeslot, issue
expensive balance orders and buy more (or less) energy based on the prediction.
In general, our energy forecasting mechanism can be improved greatly. But given
the limited amount of data at the beginning of the game and the many factors
that lie out of the brokers hands, it is difficult to find a more accurate and
efficient way to predict the needed energy. A critical part is to take weather con-
ditions into account since the weather has a significant influence on the actual
usage and production of customers.
In this paper, we presented Maxon16, the champion of the Power TAC 2016 tour-
nament. The broker takes an empirical, practical and largely heuristic approach
to the problems brokers will face in future energy markets. We explained in de-
tail some important aspects of the decision making process of the broker and
gave an overview of results achieved in the final round.
We also gave some practical suggestions that can be used by new and existing
teams to improve their brokers. We published the binaries of our broker in the
Power TAC broker repository4, allowing other researchers to use it for their own
research in the Power TAC environment.

4 http://www.PowerTAC.org/wiki/index.php/Form:Broker

http://www.PowerTAC.org/wiki/index.php/Form:Broker
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6 Related Work

Most Power TAC related papers describe brokers that participate in the compe-
tition. The champion of the 2013’s tournament and the runner-up of the 2015’s
tournament, TacTex, is describe in [16] [15]. TacTex is a very sophisticated bro-
ker that formalized all tasks that an autonomous broker faces in Power TAC
utilizing high-dimensional MDPs.
In [3] D. Urieli et al. present an approach how to use TOU tariffs in competitive
energy markets. The approach differs from our approach since it is driven by
the costs the broker has at specific times of a day rather than by the occurrence
of peak demands. However, D. Urieli et al. approach reduced peak-demands in
their experimental setting by 15%.
AgentUDE [12], the champion of 14’s competition, uses an empirical approach
to predict prices on the wholesale market by predicting a base price from past
data and differentiated these predictions to the final price. On the retail market
AgentUDE publishes tariffs with cheap rates, a sign up bonus (the user gets paid
for subscribing to the tariff), and a high early withdraw payments (the customer
has to pay a fee if he withdraws early from his contract). The main idea behind
this strategy is that customers will leave the tariff if other brokers offer new
cheaper tariffs, and by doing so AgentUDE can collect the high withdraw pay-
ments.
COLDPower [2] also uses MDPs and Q-Learning approaches in order to create
tariffs and to determine the prices on the wholesale market. This is the only
other broker, besides Maxon16, that used TOU tariffs in the 2016 competition.
The rates of the TOU tariffs are based on the user’s average consumption profile.
Another successful broker of past tournaments, cwiBroker [9], tried to establish
equilibria (price and energy) on the wholesale market. The broker tries to buy
all needed energy (for all customers) and then resell it at higher price. On the
retail market cwiBroker used a strategy that is quite similar to Tit-For-Tat.
In [11] decision trees are compared, in relation to the performance of the agent
SPOT, to MDPs in combination with Q-Learning to predict the prices on the
wholesale market.
The problem of predicting the energy consumption of customers in the Power
TAC environment is discussed by F. Natividad et al. in [5] using off-the-shelf
machine learning techniques. They achieved ‘reasonably accurate’ predictions
for the consumers. In their work F. Natividad et al. used k-means, k-medoids,
and DBSCAN algorithms to predict the demands.
A detailed analysis of the Power TAC 2014 competition can be found in [1].
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