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Abstract

Autonomy and self-determination are fundamental aspects of living in our society. Sup-

porting people for whom this freedom is limited due to physical impairments is the funda-

mental goal of this thesis. Especially for people who are paralyzed, even working at a desk

job is often not feasible. Therefore, in this thesis a prototype of a robot assembly work-

station was constructed that utilizes a modern Augmented Reality (AR)-Head-Mounted

Display (HMD) to control a robotic arm. Through the use of object pose recognition, the

objects in the working environment are detected and this information is used to display

different visual cues at the robotic arm or in its vicinity. Providing the users with ad-

ditional depth information and helping them determine object relations, which are often

not easily discernible from a fixed perspective.

To achieve this a hands-free AR-based robot-control scheme was developed, which uses

speech and head-movement for interaction. Additionally, multiple advanced visual cues

were designed that utilize object pose detection for spatial-visual support. The pose

recognition system is adapted from state-of-the-art research in computer vision to allow

the detection of arbitrary objects with no regard for texture or shape.

Two evaluations were performed, a small user study that excluded the object recogni-

tion, which confirms the general usability of the system and gives an impression on its

performance. The participants were able to perform difficult pick and place tasks with

a high success rate. Secondly, a technical evaluation of the object recognition system

was conducted, which revealed an adequate prediction precision, but is too unreliable for

real-world scenarios as the prediction quality is highly variable and depends on object

orientations and occlusion.
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1 Introduction

Autonomy and self-determination is natural for most people, but for physically impaired

this freedom can be severely limited. Not being able to perform simple tasks on your

own can be frustrating and can make you feel like a burden to others. Even performing a

normal job may be impossible without any help. Because of this, research is done in various

directions to support people with disabilities and help them to be more autonomous. This

project aims to support anyone who can not use their body freely, like tetraplegics, to

use a robotic arm for pick and place tasks. It is part of the Human-Robot Interaction at

the Workplace (Mensch-Roboter Interaktion im Arbeitsleben bewegungseingeschränkter

Personen) (MIA) project (1.1). We specifically try to enhance the perception of the scene

with which users want to interact and give visual cues on alignment and orientation of

objects, their relation to one another, occlusion, and more that may be difficult to see

from a fixed perspective. In order to achieve this, it was necessary to set up a robotic

arm and develop an application that uses hands-free input modalities like speech and head

movement to control it. This basis was developed in collaboration with Franziska Rücker

as the first part of our master theses. While she will focus in her thesis on visual cues

that do not need knowledge of the scene, I come from the other end of the spectrum

with full knowledge of the environment through the use of object pose recognition, which

enables more sophisticated visual cues. To display and integrate visual information in

3D space we use AR, which is perfectly suited for this task. Especially new AR-glasses

integrate many technologies, like speech recognition and different cameras for perception

of the environment, which help our project in different ways.

1.1 The MIA Project

The MIA project is a collaborative four-year research project of the Westphalian Univer-

sity of Applied Sciences, the Institute of Automation at the University of Bremen, and

the Interactive Systems Group at University Duisburg-Essen, as well as a few industrial

partners listed here (Gerken, Jens, 2017). The goal is to use state-of-the-art sensor tech-

nology to build workplace environments for the new upcoming Industry as a Service. This

includes finding novel ways of communication and interaction while the hands of workers

are occupied, which extends to people with disabilities. The utilized technologies such as

Inertial Measurement Unit (IMU), eye tracking, or Electrooculography (EOG), as well

as giving feedback through augmented reality, are part of the project proposal. MIA en-

ables two doctorate degrees and a few bachelor and master theses, which this is a part

of. Stephanie Arévalo is one of the Ph.D. students and guides this project as an informal

supervisor. Additionally, this project is based on, and in support of her research.

1.2 Motivation, context and objective

Having full mental capabilities but being confined to passivity through severe physical lim-

itations is an undesirable situation to be in. Additionally, because of the limited ability of

interaction with the world, it is easy to lose one’s sense of purpose and feel a disconnect

from others and the rest of society as a whole. For many people, their work is a crucial

cornerstone of feeling important and needed in life, which is often not possible to have
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Figure 1: Example of the advanced visual cue Ghost Object. When the gripper has grasped
an object a copy will be displayed on the surface directly beneath it.

with severe disabilities as shown in the short video from Hannappel, Philipp (Hannappel,

Philipp, 2015). New possibilities are created with novel and more advanced technologies.

Extending the range of interaction and opening the possibilities of working, for example

at an assembly style workplace, are the key motivations for this work. The baseline for

working with a robotic arm is to pick and place objects precisely and over an extended

period of time. As previously mentioned, with restricted movement it may not always be

possible to have an adequate overview of the scene, which then requires higher concen-

tration and creates more cognitive strain. Especially the inability to see object relations

and occlusion of objects makes the task harder. To be able to provide visual cues that

help with such problems, information about the scene, specifically the objects, is neces-

sary. Figure 1 shows an example of a 3D-projection of the picked object shown on top of

the surface it would be placed at that moment. This reduces the need to theorize where

exactly the object will be placed. Knowledge about the precise orientation and position

of the object is required to show such a projection. Acquiring these necessitates robust

and precise object pose recognition. Secondly, visualizing this projection in 3D space is

another requirement which is perfectly suited for AR, especially modern AR-glasses like

the Microsoft HoloLens or the Magic Leap One. These are hands-free and create a rough

3D-model of the environment for various kinds of interactions.

One crucial aspect is the fact that, with perfect knowledge of the environment in which

these tasks are performed, it would be possible to automate the whole process and leave

2



the human out completely. Important to note is that this thesis is focused on supporting

humans in need and not building a highly sophisticated automated system that can

perform exceedingly difficult object-manipulation tasks totally autonomously.

Additionally, the fact that humans are capable to perform mentally complex tasks and

have higher-level planning skills is a valuable benefit, which can be leveraged for highly

variable or unpredictable environments. These are not easily replaced with information

about the environment. This is further explained in section 2.2.2.

The core of this thesis is the enhancement of visual cues, called advanced visual cues,

through robust 6D-pose recognition of objects in the working area of the robotic arm.

The idea is to employ and adapt a state-of-the-art pose recognition method and

integrate it into an AR-based application to control a robotic arm. Allowing the user to

perform pick and place tasks without moving around, through the support of their visual

perception with advanced visual cues.

The resulting contributions are:

• An AR-based robot control scheme

• Support of visual perception through AR- and pose recognition

• General pose recognition for/with an AR-HMD

1.3 Structure

Following this introduction, the thesis will deal with the basics of robotic arms and intro-

duce the required concepts for the rest of the thesis in chapter 2.1. Additionally, it gives a

broad overview of the scientific work that was already done with robotics supporting peo-

ple with disabilities (2.2), going into different input modalities (2.2.1) and the importance

of trust and autonomy (2.2.2). The focus here will be specifically on literature without

the use of AR, which will be discussed in the third chapter.

Chapter 3.1 will first define the term AR, Virtual Reality (VR) and Mixed Reality (MR)

and discuss their relationship to one another, as well as the confusion surrounding them.

After that it will briefly introduce modern AR technologies and discuss their respective

advantages and disadvantages in chapter 3.2 and 3.3. Followed by a literature review

about enhancement of robotic systems with AR in different scenarios (3.4).

Object and pose recognition will be discussed in chapter 4. Beginning with a definition

of the different terms and their relevance for research in 4.1, followed by dealing with the

question of what the current difficulties in the field are (4.2). 4.3 will deal with the three

main approaches which dominated the field at different points in time and discuss their

respective advantages and disadvantages. Lastly, 4.4 is a literature review about bridging

the gap of the three research areas. Robotics and object-pose recognition in 4.4.1, AR and

object-pose recognition in 4.4.2 and at the end a combination of all three (4.4.3).

Beginning with chapter 5 the practical parts of this thesis will be described. This chapter

discusses the taken decisions for all aspects of the constructed prototype based on the

research and initial constraints. Chapter 6 describes the whole system beginning with a
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general overview (6.1), the intended workflow (6.2) and the kind of interactions that where

utilized (6.3). Following this, the three main parts of the prototype are introduced: the

control scheme (6.4), the advanced visual cues (6.5) and finally the recognition system

(6.6). Chapter 7 deals with the evaluation of the prototype. Two separate evaluations

were performed, a small user study which is discussed in section 7.1 and a technical eval-

uation in 7.2. Concluding the evaluation with a discussion of the results in the context

of the whole system (7.3). The last chapter is the conclusion (8) in which the system is

shortly summarized and reflected upon and finally, possible future work on this project

will be discussed in 8.1.
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2 The robotic arm

There are several different ways to give a disabled person more autonomy in their personal

life and workplace like a motorized wheelchair, but enabling physical interaction is depen-

dent on a robotic device. May it be in humanoid form or other, it will most likely have

some form of arm with a gripper (or other tools) to interact with the world. Even con-

trolling a standalone robotic arm, fixed to a stationary mount, is already a difficult task.

The cause of this difficulty and how a robotic arm works in general, will be discussed in

the following chapter. Followed by a review of advancements to help physically impaired

with robotics.

2.1 What exactly is a robotic arm?

Robotic arms are multifunctional mechanical devices originally developed for industrial

use and highly hazardous or repetitive tasks. They are inspired by the versatility of actual

human arms and are comprised of several joints for freedom of movement and a hand-like

gripper or a tool for use in different tasks. In addition, they are programmable by an

operator to adapt them for varying scenarios. Garcia, Jimenez, De Santos, and Armada

(2007) describes the robotic arm as the biggest workforce in modern production lines

which enables the almost unlimited mass production that started during the 1960s in the

automotive industry. Garcia et al. additionally name their versatility as one reason why

robots became a popular field of research for Human-Computer Interaction (HCI) and

sparked the field of Human-Robot Interaction (HRI) (Garcia et al., 2007).

2.1.1 Composition and movement

A robotic arm is a series of links and joints connected to one another, also called a

kinematic chain. Links are rigid connections between joints similar to bones in a human

arm. The end of a robotic arm is called end-effector and has a gripper or tool attached

to it, with which the arm can perform its designated task, as described by Saha (Saha,

2008). The center point of the end-effector attachment is called Tool Center Point (TCP),

it is the point where the highest force is applied when the arm is working. Knowledge of

how strong the force at this point is, is important for the regulation of pressure applied

to the work-piece. Joints are usually rotational in one axis and have limits on how far

they can rotate. The joint motion is produced by a motor that can be powered through

hydraulic, pneumatic, or electric energy. Electric step motors are used most often for

smaller sized robotic arms because they ensure high precision and can easily be controlled

programmatically (Harris Tom, 2002).

For each joint that a robotic arm features, it gains one Degree Of Freedom (DoF). Most

robotic arms have three to six DoF. Six DoF are already enough to reach every position and

orientation in 3D space with the end-effector (within the arms reach). When a kinematic

chain has more DoF than necessary it is called redundant, because in this case it has many

different poses in which it can reach a specific position and orientation in 3D space. The

term redundant is relative to the work space of the robotic arm, which means for work

on a 2D plane it only needs 3 DoF to be redundant and for reaching a point in 3D space

(rotation excluded) 4 DoF would be enough. Shamir (1990) describes the robotic arm as
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Figure 2: Safety envelopes of a standard robotic arm.

redundant when n > m, where n = number of dimensions the robotic arm moves in and

m = number of workspace dimensions. The human arm, for example, has seven DoF,

which makes it redundant and gives it a very high maneuverability (Shamir, 1990).

The versatility gained by a high number of DoF comes with a caveat. Control of the

robotic arm quickly becomes very complex and hard to perform for a human operator.

Generally, the movement paradigms can be divided into two categories, controlling the

robot in joint space and Cartesian space (also called world space). The first is very

simple and involves moving each joint of the robotic arm individually one after another.

This has the advantage that the operator always knows how the arm will move, but

its tediousness and slowness are the reason this movement control scheme is not often

utilized. Cartesian space movement control, on the other hand, is quite complex but

makes the control comparatively straight forward. The operator directly controls the end-

effector of the robotic arm and can move/rotate it along each dimensional axis, while all

other joints rotate accordingly by themselves to accommodate for the effector movement.

Unexpected movement of the arm and the accompanied risk of collisions are the most

prominent disadvantages of this scheme. It additionally has a high computational cost,

which further increases with more DoF. The underlying method to calculate each DoF,

dependent on their position in the kinematic chain, is called inverse kinematics. There

are many other different algorithms and mathematical approaches with drastically varying

computational effort, complexity, and precision (Aristidou & Lasenby, 2011; Buss, 2004;

Tolani, Goswami, & Badler, 2000).

2.1.2 Safety concerns

Working with a robotic arm, especially an industrial one, requires attention to safety.

Different from normal machines a robotic arm has the capabilities of powerful, fast, and

broad movement that can be unexpected for the operator. Occupational Safety and Health

Administration (2019) describes different kinds of envelopes which represent areas with

varying safety concerns (Occupational Safety and Health Administration, 2019). In figure

2 the three zones are denoted as Maximum Envelope which represents the furthest reach

of the arm, the Restricted Envelope which is the zone to which the arms movement is

restricted to by software or limiting devices and the Operating Envelope is the area used

by the active program and the robots intended area of motion. These envelopes should

only be entered with appropriate measures, like cutting the power to the machine.

6



As robotic arms and robots in general spread more into the domain of assistive robotics

for human needs, the safety aspect becomes a crucial concern as industrial arms are

mainly teleoperated or automated and, as highlighted, need restrictive envelopes that

need to be fenced off. The main approach to solving this problem is to give the robotic

arm either awareness of collisions and let its motion stop in place, or awareness of its

surroundings to avoid collisions overall. Much research has been done in either direction,

for example, (Lumelsky & Cheung, 1993) created a skin for robotic arms that contains

about 500 small infrared proximity sensors evenly distributed in a grid around all parts

of the robotic arm, where a collision could occur. In real-time their system collects the

sensor data, processes it, and calculated the size and direction of the next step. Their

setting is for teleoperated systems, where the operator gives movement commands and

the system tries to move as close to the given path without jeopardizing its safety,

respectively avoiding collisions.

A different approach is the depth space collision avoidance system (Flacco, Kröger,

De Luca, & Khatib, 2012) developed. With the use of a Microsoft Kinect, they can

calculate the distance between the robotic arm and an obstacle. This method produces a

repulsive vector (a vector in the opposite direction of the obstacle) to control movement

and can adjust the joint positioning in case of a redundant arm, to still perform the

given task.

A system that tries minimizing the force of a collision to conform to the ISO 10218-1

standard (ISO/TC 299 Robotics, 2011) for human-robot collaboration was developed by

(Lauzier & Gosselin, 2011). They mechanically enhanced the safety of the robotic arm

by placing an electronically adjustable torque limiter in between each actuator (joint).

They present a method to calculate the optimal limit for each torque limiter to preserve

as much force as possible, without compromising safety. If a collision occurs that exceeds

the torque limits the arm will just stop automatically by triggering an emergency stop.

S.-D. Lee, Kim, and Song (2013) also approach the collision detection of a redundant

robotic arm. They present a collision detection index calculated from the data of joint

torque sensors build into each joint of the robotic arm. Remarkable is the ability to

detect human body collisions even when force is simultaneously applied from the

end-effector and the collision, which normally interferes with reliable detection (S.-D. Lee

et al., 2013).

As shown by these examples, research feature many different approaches which may still

have some disadvantages, like enhanced complexity and cost of the robot in the case of

additional sensors or blind spots and high computational costs with vision-based collision

detection. None the less they bring the field of research further along and possibly enabled

KUKA to design the first series-produced Human-Robot Collaboration (HRC) compatible

robotic arm, called LBR iiwa, that conforms to the aforementioned ISO standard (ISO/TC

299 Robotics, 2011) (KUKA-AG, 2018).
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2.2 Research on how to support the physically impaired with robotics

Creating a robotic system that is capable of helping physically impaired is not an easy

task. Research in a few crucial areas is still very important and several problems need to

be addressed to produce a broadly usable system. Here I want to highlight two of them,

which are the different input modalities and how much autonomy for a robotic arm is

beneficial and what the implications of too much autonomy are.

2.2.1 Input modalities

One important aspect is the input modalities for the user controls. As aforementioned a

robotic arm with only a few DoF is already difficult to control. In 3D-space even with

inverse kinematics there are still six axes to handle (three for movement and three for

rotation). In a situation of severe physical impairment, the standard method of input

does not apply anymore. Hand input is used for almost everything and has great

versatility, fast response times, and can be very precise. Only in recent years did other

forms of input, like speech, eye-tracking, and head-tracking, start to become more usable.

All these methods still have some major disadvantages, mostly caused by technological

limitations. Following I will give a brief introduction to these three methods and discuss

some of their remaining disadvantages and additionally give a glimpse into the kinds of

research done for the niche field of robotics for physically impaired.

Speech input

Speech inputs’ biggest problem is that the actual recognition of words is dependent on

many factors like word similarity or accent of the speaker which make it unreliable.

Additionally, background noise has a negative impact that can be alleviated to a certain

degree by directional short-range microphones. Lv, Zhang, and Li (2008) for instance

developed a speech-based control system for a small mobile robot that can be driven

around and has a small arm that can be extended. Their system is based on pattern

matching of single words. As they point out, for a small vocabulary their pattern

matching approach is highly efficient and pretty robust to errors, which is shown by their

test results which had a perfect score in a normal environment but got significantly

worse with background noise. It fell from 100% accuracy to about 82%. An additional

disadvantage is the vocabulary size which needs to be small in order to work reliably (Lv

et al., 2008).

In their work another problem with speech input becomes apparent. The direct control

as used by Lv et al. (2008) is not practical in a real scenario. An exemplary command

they use is go forward but for how long or how much the robot moves is not clear, like

pressing a button for the duration of the movement would be. This extends to

controlling an end-effector which could not be easily controlled with simple voice

commands, even when they are recognized perfectly. Judging distances or angles for

rotation to add into speech commands (i.e. rotate 23◦ to the left) works only well for

discrete, well-known values (90◦, 180◦, etc.). One approach would be to make the robot

more autonomous and therefore not require such low-level commands. Only higher-level

commands as pick object would then be needed and the robot figures out how to move
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and rotate its end-effector to pick up the object by itself.

Kurnia, Hossain, Nakamura, and Kuno (2004) used simple object recognition as a basis

for selecting an object with higher-level speech input. They developed a system in which

the robot can detect all the objects in the scene and tries to deduce which one the user

means when giving a command to for example pick up the apple. By asking about

certain features the robot can narrow down remaining possibilities. This dialog that

arises is similar to the Akinator 1 application which tries to identify a figure (real or

fictional) you randomly pick at the beginning by asking yes or no questions. the system

of Kurnia et al. (2004) is able to not only understand yes or no, but the features of

objects like color, shape, position, or size (Kurnia et al., 2004).

Eye-tracking

Tracking the movement of the pupil and inferring where the user is looking based on that,

or recognizing patterns in the movement is the basic goal of eye-tracking. It can imitate

a normal computer mouse on a basic 2D screen or can be used to point at something in

3D-space. Eye-tracking most often suffers from imprecision due to calibration errors and

occlusion of the pupil through eyelids and the resulting false positive pupil detections.

Because of the technical difficulties, many researchers in the field of robotics who want to

use the eye-gaze rather use an approximation of it, the head-gaze. Palinko, Rea, Sandini,

and Sciutti (2016) performed a study to examine if the head-gaze can replace eye-gaze in

natural interactions with a robot. They concealed to the subject how the robot

interaction is tracked and found that with this uninformed subject the eye-gaze performs

much better for selecting specific objects (Palinko et al., 2016). The reason for this is

that humans do not always move their heads when looking at an object, especially when

the points of interest are spatially close. Additionally, Palinko et al. (2016) point out

that joint attention between two persons is established by looking at the point of interest

and before and/or after into the eyes of the counterpart. This can enable more robust

natural behavior of the robot if the system is aware of this attention establishment.

Despite the trend in HRI to replace eye-gaze with head-gaze, because of the remaining

technical difficulties, there is still active research going on. For example Barea, Boquete,

Bergasa, López, and Mazo (2003) utilize eye-tracking to control a wheelchair with a

basic 2D user interface. They use electro-oculography to detect eye movement and

employ an inverse eye model to determine the direction the user is looking. Based on the

generated information Barea et al. (2003) developed different control methods. A direct

input method in which the action buttons on the screen need to be dwelled on for a

certain amount of time to activate, a sweep method where the specific eye movement

(called tick) selects a command and a continuous method where the eye position,

independent of the screen, is used for command activation (Barea et al., 2003). A few

years earlier Yanco (1998) developed a similar, more basic, wheelchair control based on

the same technology (Yanco, 1998).

In recent research, concerning the physically impaired and eye-tracking, Tanaka, Mu,

and Nakashima (2014) constructed a meal-assistance robot that utilizes a special

Ultrasonic Motor (USM) and eye-tracking for user-control. The robot is not a

1https://en.akinator.com/game
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multi-joint robotic arm, instead it uses the USM for simple orthogonal movements of the

spoon. A food-holding tray with tracks is used, in which the food is placed in bite-sized

chunks that fit onto the spoon. The eye interface is laid out like a number pad where

each number is a command, for example, Select tray, Pushing, Send food, Return food,

etc. For selection, the user looks at one option to select it and blinks for confirmation.

Because of the robots simplicity, it needs to be placed at a specific height and distance to

the user (Tanaka et al., 2014). This and the blink are glaring disadvantages in the design

of Tanaka et al. (2014), especially because blinking is not something that can be totally

controlled. Many factors determine the ability of a human to blink or not blink reliably,

like dryness of the eye for example.

Head-tracking

Head-tracking is the most robustly working of the three input modalities discussed here.

In its simplest form, the rotational movement of the head is tracked by an Inertial

Measurement Unit (IMU) attached to the head, for example with a strap. An IMU is a

small electronic chip that contains an accelerometer, gyroscope, and sometimes a

magnetometer which enable it to determine its angular acceleration. Ahmad, Ghazilla,

Khairi, and Kasi (2013) reviewed the different IMU technologies in their paper and

illustrate many common day-to-day applications for them (Ahmad et al., 2013). The

biggest disadvantage of IMUs are their sensor inaccuracies and the resulting drift.

Baldi, Spagnoletti, Dragusanu, and Prattichizzo (2017) developed a wearable control

interface for a robotic arm which utilizes a Magnetic, Angular Rate, and Gravity

(MARG) sensor, which is similar to an IMU, and three Electromyography (EMG)

electrodes as user input. These sensors are integrated into a wearable cap. The EMG

electrodes replace a button press by detecting the contraction of the frontalis muscle and

the head roll and pitch tilt translate to continuous motions of the robotic arm. They use

four modes that can be switched between. Two of which are for translational movement,

where one is controlling motion in the horizontal plane and the other for up and down.

The other two modes are similar, but for the rotation of the end-effector. With this

interface they ran an experiment in which users had to perform two scenarios, one task

was to fill a glass with water and the other was to fit an object into a hole. The times for

task completion were about twice as long in compared to a normal joystick at about 120

seconds for scenario one and 100 seconds for scenario two, which are pretty good results

for hands-free interactions (Baldi et al., 2017).

Another wheelchair system was developed by Tomari, Kobayashi, and Kuno (2012)

which uses head-gaze for user input in combination with a simple button to switch

modes, similar to Baldi et al. (2017) who used EMG electrodes as button replacements.

Tomari et al. (2012) point out that other input methods could be used as button

replacement, like voice commands or blinking. For the head-gaze tracking, they use a

simple webcam image and the software FaceAPI 1 which is able to calculate the

necessary gaze data in real-time, of which they only need the yaw angle. Their approach

is to have a semi-autonomous wheelchair that uses the yaw angle as a goal direction and

performs the lower-level movement tasks itself, leaving the user only having to intervene

1https://www.seeingmachines.com/
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when the directions need to be changed. Besides the semi-autonomous mode, there is a

manual mode, which is used for precise turning towards a specific direction. For

autonomous movement the wheelchair is equipped with a Microsoft Kinect, a

laser-sensor in addition to an IMU. Tomari et al. (2012) experiment is also similar to

Baldi et al. (2017) in that they compare their input scheme with the performance of a

joystick. Results also show that the joystick is twice as fast as their semi-autonomous

and manual modes, but the semi-autonomous mode navigated to all target locations in

the shortest overall distance (Tomari et al., 2012).

As shown in this section there are interesting approaches for these input modalities and

many more that are not outlined here. Besides these three major modalities there are

plenty of other ideas that try to employ even more experimental approaches like a brain

interface (Finke, Knoblauch, Koesling, & Ritter, 2011) or tongue input (Saponas, Kelly,

Parviz, & Tan, 2009), that may lead the future.

What most if not all of these input modalities have in common is the heightened workload

for users and a limited degree of freedom they provide without much mode-shifting or

similar techniques. Consequently, more autonomous robotic devices are often used like

in (Choi, Anderson, Glass, & Kemp, 2008; Tomari et al., 2012). These replace the lower

level input with high-level commands and reduce the users’ workload. Now the question

arises how much autonomy is too much and where does the users’ trust come into play?

2.2.2 Autonomy and trust

Specifically, in research for physically impaired, the term autonomy is used quite often in

two different contexts. One has to be aware of the varying subjects this term can refer

to. The first is the autonomy of a robotic system, which includes its capability to

perceive the world around it and adapt to this changing environment by itself. The more

autonomous a system is, the more it can do by itself and does not need a human to guide

it. The other subject is the physically impaired user of the system and the goal to

provide him with technology to increase his autonomy and independence. Important to

note is that just maximizing the users’ autonomy is not always desired. Most research is

not only focused on replacing caretakers with new technology, rather to increase the

impaired persons’ well-being and overall satisfaction by enabling them to take care of

themselves.

Unintuitively there is no direct correlation between raising the autonomy of a robotic

system and resulting generated autonomy for users. Indeed, a system that can act on its

own is potentially more useful for a tetraplegics who can not drink by themselves or get a

glass from a cupboard. Now it may already be seen as just another external helper that

is relied upon and not an extension of the user that enables him/her to do the task by

themselves. D.-J. Kim et al. (2011) made an exploratory study in which they tried to find

a correlation between task completion and satisfaction for spinal cord injured subjects.

One group used an autonomous robotic arm to pick and place objects from a shelf with

two different height levels. The other group was tasked to do the same with a manually

controlled arm that included a few different input methods. The study took place over a

period of three weeks. While the task completion was the same for both methods the
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effort for autonomous control was significantly lower, nevertheless the satisfaction was

not heightened in autonomous mode, in fact, the raw data in satisfaction was lower. An

indication for a reason is given in the semi-structured interview following the study

where it was indicated that even though the users could benefit from the autonomous

system, they felt more in charge during the manual mode (D.-J. Kim et al., 2011).

Another study, performed by Gopinath, Jain, and Argall (2016), was interested in how

differently impaired users would decide to tune the degree of autonomy the system has.

Gopinath et al. (2016) specifically were interested to give options for customization

because physical impairments differ widely between subjects and the input requirement

may even change over time (in case of rehabilitation or worsening of the disease). The

users had to tune system autonomy at the beginning before performing pick and place

tasks with a robotic arm and after the first half of the experiment had the opportunity

to adjust their settings. The test subjects where divided in two categories, user with

spinal cord injuries and non-injured people. The results show that the customization not

only improved performance but also reduced the differences in performance between

injured and non-injured subjects. Most interesting is the fact that the custom-mode was

not optimized by users to be time-optimal or minimum-effort, rather something more

complex, which coincides with the results of D.-J. Kim et al. (2011) that more autonomy

and therefore less effort, is not always a primary goal (Gopinath et al., 2016).

Another reason why system autonomy is not always desired, besides possible reduction of

user autonomy, may be an issue of trust. J. D. Lee and Moray (1994) studied how and

when an automated mode of a system is used, in contrast to a manual mode, by operators

in a semi-automatic pasteurization plant. The two big influences they highlighted are the

self-confidence of operators in themselves versus the trust they have in the machine. As

they put it:

In general, automation is used when trust exceeds self-confidence and manual

control when the opposite is true. (J. D. Lee & Moray, 1994, p. 1)

Additionally, they point out that this interplay is especially elevated in physical contact

situations, where actual harm to the operator is possible when the system faults. The

formed goal for the design of such systems is that considerations need to be made for

this dichotomy and the system should reflect its certainty and how much it can be

trusted at any given moment (J. D. Lee & Moray, 1994).

Dragan and Srinivasa (2013) build a system that tries to grab an object to which it is

directed by a user via hand motions. Their algorithm calculates a prediction based on

user input and tries to make an arbitration on which object to grab. It can follow the

user input until the decision is made, after which it will start grabbing autonomously.

The interesting part is the possibility to adjust the arbitration function in order to make

the robot seem more timid or aggressive. Aggressiveness, in this case, correlates with

higher autonomy, because the robot starts to move earlier on its own and needs less user

input. Dragan and Srinivasa (2013) made a small study to determine the reception of

these two behaviors and were most interested in user preference in the four cases where

the grasping task is difficult/easy and the robot’s prediction is right/wrong for both the

timid and aggressive version of the robot. Resulting from the study a clear time
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difference between the two modes is visible, which has a decent correlation to user

preference (Pearson’s r(30) = .66, p < .001), but it does not capture the user’s experience

completely. The user preference for both cases where the robot is wrong is much higher

for the timid version than the aggressive. Additionally, there was no preference difference

in the easy and right task for either timid or aggressive. Only for the hard task which

was predicted right is the aggressive mode the preferred one. Especially the two cases

where the robot is wrong coincide with the findings of J. D. Lee and Moray (1994), that

a system should reflect its confidence in some way to build trust. They point out that

the robot should not just be quick, rather it should be intent-transparent (Dragan &

Srinivasa, 2013).
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3 The use of augmented reality

As stated in the introduction, augmented reality is a useful tool for the visualization of 3D-

information. As seen in chapter 2 all kinds of information would be beneficial to have, while

controlling a complex machine like a robotic arm. From showing safety warnings or intend

of the arm to having virtual buttons following the user or robot for interaction purposes.

The ability to place information in 3D space as holograms may be especially useful in

these scenarios. This basic concept of AR, the age-old idea to have virtual elements

integrated with the real world, was initially inspired by science fiction like Star Wars or

Star Trek. Interestingly the idea of a hologram is much older than these films and started

in the early 20th century with the work of Gabriel Lippmann (1908) on color photography

based on light interference (Gabriel Lippmann, 1908). Modern AR technology is doing

on a technical level today something very different. Even if the displayed 3D objects

from these devices are often called holograms, the technology does not fit the scientific

definition. The scientific field, called holography, defines the word hologram specifically

as recording (an then displaying) the shape of light after it reflects off a physical object,

enabled through its wave-like properties. This is a wildly simplified description of what

Richardson and Wiltshire (2017) give in the introduction to their book The Hologram

(Richardson & Wiltshire, 2017, pp. 1–5). In this book they specifically mention that

AR today uses not the wave-properties of light but rather stereoscopy and environment

registration to achieve their goal (Richardson & Wiltshire, 2017, pp. 17–25).

Besides misuse of the term hologram, AR in addition to VR and MR have another problem

with the definition, which will be alluded to in the following section.

3.1 The Reality-Virtuality continuum

Defining a subject matter is always important to negate misunderstandings and confusion

on what is actually said. Especially in situations where a field grew over a longer period

of time and new aspects arise that were previously not considered. Augmented as well

as virtual reality are such topics that are intertwined, have similarities but are still quite

different in many aspects. To straighten these vague connections and clear things up

Milgram and Kishino (1994) performed a taxonomy of this area of research and clearly

defined what these different terms mean and how they relate to each other. They came up

with an intuitive visualization of their so-called Reality-Virtuality continuum, which gives

the aforementioned terms a quite natural place. Figure 3 shows the continuum which

is a simple one-dimensional graph that spans from actual real environments to complete

virtual ones. They focus on display technology, which come with different properties

and combination levels of reality and virtuality. At the core they say everything on this

continuum between the two extremes is a subcategory of Mixed Reality (MR) because

they combine the two to some degree or another and therefore mix them together. In total

Milgram and Kishino (1994) define six different classes of MR displays, going from monitor-

based and non-immersive video displays that have graphics overlaid, to see-through HMD,

and large-screen displays where real objects can be integrated (Milgram & Kishino, 1994).

A year after their first taxonomy Milgram, Takemura, Utsumi, and Kishino (1995) elabo-

rated on their previous work and interestingly set out to more precisely define AR in terms
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Figure 3: The Reality-Virtuality continuum. Based on (Milgram & Kishino, 1994)

of their continuum. As if they knew that Microsoft would years later come and try to

define these terms themselves, Milgram et al. (1995) gave them a clear idea of what they

mean by the term AR. Milgram et al. (1995) even mentioned most of the issues which

are still problems the HoloLens has today, like the small Field Of View (FOV), being

uncomfortable to wear and inaccuracy with head-tracking (Milgram et al., 1995).

But it did not seem to help, after many years of accepted terminology in the research

field Microsoft redefined the virtuality continuum with a subtle difference, which brought

back the confusion on what is actually meant when using some of these terms. To specify,

on Microsofts renamed Reality-Virtuality continuum (called Mixed reality spectrum) they

define AR as the polar opposite of VR which both lie right next to the two extremes.

They say:

...Thus the experiences [mobile phones] offer cannot mix between physical and

digital realities. The experiences that overlay graphics on video streams of

the physical world are augmented reality, and the experiences that occlude

your view to present a digital experience are virtual reality (Bray Brandon,

McCulloch Jesse, Schonning Nick, Zeller Matt, 2018).

This contrasts with the original AR description of Milgram et al. (1995), which defines

it as a range starting at Bray Brandon et al.’s definition and ending somewhere in the

center of the continuum, where the prominence of reality and virtuality converge. For this

reason, Microsoft calls the HoloLens a MR device, which fits with both definitions, but

specifically says that it is not an AR device (Bray Brandon, McCulloch Jesse, Schonning

Nick, Zeller Matt, 2018). Which it is in the original sense.

Concluding, in this thesis the first definition of Milgram and Kishino (1994) is being used

and both terms, AR and MR, are applicable for the HoloLens. Mostly used is the term AR

to refer to its capabilities because it is a narrower term and describes them more precisely

than MR would.

3.2 What does augmented reality bring to the table?

As stated, AR spans almost half of the virtuality continuum and begins close to actual

reality. A common example of AR close to that side is the widely popular game Pokémon

GO 1 which uses GPS and IMUs of the smartphone to place the 3D models in specific

locations but is not able to let them interact with the real world in any way. Much farther

1https://www.pokemongo.com/
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to the middle of the continuum is Microsofts previously mentioned HoloLens, which uses

in total eight different cameras. Four environment tracking cameras for map building and

head tracking, two depth sensors where one is for the spatial mapping and the other for

hand-tracking and two Infrared (IR)-reflective cameras which are unaffected by lighting

conditions and help for depth calculation (Zeller, Gedye, Ong, Schonning, & McCulloch,

2018). Through spatial mapping and head tracking the registration of the HoloLens is

enabled. Additionally, the 3D-mesh of the surroundings, which is generated during this

process, allows integration of 3D-objects into the real world and lets them interact with

it.

To have a convincing realness of the holograms a high precision of registration is neces-

sary. Especially because humans are visual creatures and can spot visual mismatches up

to a very fine difference, as Azuma (1997) elucidates in his survey of AR (Azuma, 1997,

pp. 18–22). As the HoloLens was the only widely available modern AR device, it was used

extensively in research and its performance got measured and tested on multiple occa-

sions. Y. Liu, Dong, Zhang, and El Saddik (2018) for instance made a general survey of

the technical capabilities of the HoloLens in which they evaluated head localization, real

environment reconstruction, spatial mapping, hologram visualization, and speech recog-

nition (Y. Liu et al., 2018). For hologram visualization, they measured an average visual

distance of 1.25 cm with a standard deviation of 0.25 cm when overlaying a 3D model

exactly on top of its real counterpart. Which points to a small imprecision of either the

display technology or registration of the HoloLens. In contrast to Y. Liu et al. (2018),

Vassallo, Rankin, Chen, and Peters (2017) performed a more directed study of HoloLens’

hologram stability. Their goal was to examine if the device has the technical capabilities

for intraoperative clinical use, as very high precision is required in surgeries. They devised

four different actions that were performed during the study which might occur in clinical

procedures. Walking, Sudden Acceleration, Occlusion, and Object Insertion where sep-

arately performed and resulted in slight drifting of the 3D models. Displacement errors

were at 5.83 mm with a standard deviation of 0.52 mm (Vassallo et al., 2017). These

results show that the hardware is by no means perfect yet, but already advanced enough

to handle situations where precision is important, up to a point.

Another important part of modern AR is the FOV in which the 3D models are displayed.

This is one of the biggest flaws of the HoloLens, as its FOV is only 30◦x17.5◦ horizontally

and vertically respectively. This limits the viewing area of holograms to something alike

to looking through a small window in front of you onto the virtual parts. Not only limits

this immersion but makes it harder to locate holograms in space. All virtual objects which

normally would still be in your FOV are not displayed and head-movement is required to

center them and bring them into the FOV of the device. Other current hardware has only

slightly better FOVs (Magic Leap, HoloLens 2), which are still too small for many tasks

and not even close to the near 200◦ horizontal FOV of humans (Ruch & Fulton, 1960).

Hand tracking is another feature modern AR devices often integrate. It is not part of the

display technology and therefore does not fit into Milgram and Kishino (1994)s definition

of the virtuality continuum. It nonetheless is an important step to get closer to the cen-

ter of a perfect blend between reality and virtuality. Additionally, it just makes sense to

manipulate a virtual object with your hands, because it is the most natural thing to do
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with actual objects. At this point in time, the hand tracking is still mostly limited to

simple gestures like an air tap, which just replaces a normal button click. Actual hand

and finger tracking similar to what the Leap Motion 1 achieves is not yet possible with

modern AR-devices.

3.3 The state-of-the-art augmented reality HMDs

Besides the HoloLens which was discussed in the previous section in the context of general

AR capabilities, there are a few alternative AR devices that are generally technologically

on par with the HoloLens. Most notably the Magic Leap One which has similar capabilities

as the HoloLens, like inside-out tracking with infrared cameras, spatial registration, and

gesture recognition. The device has two advantages. One is the FOV, which is bigger (40◦

x 30◦) and the other is its weight, which is almost half what the HoloLens weighs (600g

vs 320g). The caveat with its weight is that it has an additional small computing unit,

which can be attached to the belt (Magic Leap Inc., 2019; Sauter, 2018).

As a successor to the HoloLens, Microsoft announced the HoloLens 2 in early 2019. It

promises a better weight distribution for more comfort while wearing the device, included

eye-tracking and a bigger FOV which rivals the Magic Leaps with 43◦x29◦ (White, 2019).

3.4 Literature: How AR can enhance the use of robotic systems

Since the release of the HoloLens, research on virtual augmentation of robotic systems had

a big surge. Before AR with head-mounted displays became viable research focused mostly

on projecting information into the real world via projectors. An example is the system of

Leutert, Herrmann, and Schilling (2013), where a projector shows the information on what

the robot is going to do, like a path it is going to follow (Leutert et al., 2013). Research

focused on object detection/recognition is deliberately left out in this section and will be

discussed in sections 4.4.2 and 4.4.3.

An interesting direction was to use AR to help the researcher debug their autonomous

systems when they fail. This was achieved by spatially displaying the sensor data of the

robotic systems at their real-world locations, which gives the developer an easier way

of interpreting it and finding reasons for failure. Collett and Macdonald (2010) provide

a systematic analysis of the challenges and approaches to visualize the robotic data for

debugging. Giving architectural ideas on a general software system that is applicable for a

wide range of different robotic setups (Collett & Macdonald, 2010). Based on Collett and

Macdonald (2010)s research, Renner, Lier, Friese, Pfeiffer, and Wachsmuth (2018) used the

HoloLens years later to not only show the sensor data of the robot via the new hardware

possibilities but also used it as a back-channel to provide the robot with additional data

gathered by the HoloLens itself (Renner et al., 2018). At that point, the data visualization

was not only intended for researchers but as a general help for users to understand what

the robot is seeing and going to do.

This line of reasoning was also the basis for the research by zu Borgsen, Renner, Lier,

Pfeiffer, and Wachsmuth (2018) who wanted to improve Human-Robot handover using

different augmented reality approaches. They visualized the robot laser scans, the path it

1https://www.leapmotion.com/
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Figure 4: Side by side comparison of the robotic arm motion visualization by (Rosen et al.,
2017) (left) and (Bolano, Roennau, & Dillmann, 2018) (right).

will take, its battery life, and pose via the HoloLens for an AR scenario. Additionally, they

added a virtual body part to the robot, namely the head, to give it facial expressions during

the handover and help the human to better understand what is going to happen. These

enhancements were based on a previous study for handover without AR which showed that

non-experienced users had problems understanding the robot. A future study with a fully

or partially virtual robot will be conducted based on the design of their paper (zu Borgsen

et al., 2018). Communication of motion intend is especially important when a human

and robotic arm work collaboratively in close proximity to each other. While humans

communicate in subtle ways what they are going to do when working close together, a

robot lacks such natural behavior. For that reason, quite a bit of research is conducted

to help this kind of information exchange. For instance (Bolano, Roennau, & Dillmann,

2018) and (Rosen et al., 2017) use similar approaches for this problem. They utilize AR

to show the motion volume (or sweeping area) of the robotic arms next motion to the

user to inform him about possible collisions. Rosen et al. (2017) conducted a study that

indicates an increase in prediction accuracy of 16% and a decreased task completion time

of 61% with the AR interface. Figure 4 shows the differences in their visualizations, where

Bolano et al. (2018) (right) used a voxel-based volume to show the motion area and Rosen

et al. (2017) (left) a more realistic representation but only snapshots of the motion in short

intervals.

For non-autonomous robotic arms Gadre et al. (2019) build a system followed by a

study, where the user can plan the robot’s motion via waypoints using the HoloLens.

The difference to the previous research is that the users themselves are responsible for

the motion and therefore want to know if the planned path works as intended (no

collisions). For this reason, the path is shown in AR similar to the approach of (Rosen

et al., 2017) in figure 4. When the user notices unintended motions they can adjust the

waypoints until it conforms to what they intended. In the performed study this AR

interface was compared to a basic 2D one, where the users needed to plan a path for

picking and placing objects at specific positions. Their results strongly support the use

of the AR interface (Gadre et al., 2019).

Krupke et al. (2018) compared different input techniques, enabled by AR and the

HoloLens. They lay a virtual version of the robotic arm over the real one and when the

user picks a target, an animation is played that shows the upcoming movement of the
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real robotic arm. When the user is certain that the robotic motion is what they expected

they can confirm it and the real arm moves. Krupke et al. (2018) focus was on the two

kinds of input modalities to select a specific target via pointing, which they compared in

their study. The first method was the head gaze of the user, like a laser pointer, coming

from between their eyes and shooting in the direction they look. For confirmation,

speech input was utilized in both techniques. For the second method, the user needs to

point with a finger that is tracked by the HoloLens, and a ray shoots from the head

position through the tip of the finger for selection. The results of their small study

indicate that the head ray laser pointer method is faster, more precise, and has a lower

taskload than the finger-pointing method (Krupke et al., 2018).
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4 Advancements in object and pose recognition

Object recognition is the next logical step for many systems that interact with the real

world in one way or another. Autonomous cars should stay on the road and try to avoid

any object, but when unavoidable it should be able to choose a trash bin on the side of

the road, rather than a child trying to catch a ball. Or a furniture AR application could

not only show the new couch in the living room before you brought it but could easily

place it in the correct location in front of the TV. Especially when working with robotic

arms it opens the possibilities for autonomy in object manipulation, or as in this thesis,

gives users additional information about the objects and helps them with their tasks.

In this section, the focus lies on the specific sub-task of object recognition, pose recognition,

which is necessary for precise interactions with objects that are not in a perfectly controlled

environment. First, a proper definition will be given, to make clear what the differences

between the terms object classification, object localization, object detection, and pose

detection are. Following statements on what makes these tasks difficult to solve.

In the second half, we will look at the different approaches on how to solve the object-pose

recognition problem. Lastly will be an examination of the research regarding not solely

object-pose recognition but the intersections of it and Robotics/AR.

4.1 Defining object and pose recognition

Object detection/recognition has been a constant research field in the area of computer vi-

sion and went through several phases in the last decades. Beginning in 1963 when Lawrence

Gilman Roberts (1963) published his thesis ”Machine perception of three-dimensional

solids”. Where he developed a program that could detect the outlines of simple 3D-

objects from images and match them to predefined internal representations. If successful

the object can be drawn virtually on the screen from any angle (Lawrence Gilman Roberts,

1963). Since then the field evolved extensively and went through a few different techno-

logical phases. As a basis for the comparison of new approaches, a few different terms

emerged along the way. These start with the easiest task and get progressively harder

to solve subsuming the previous one, as stated by Russakovsky et al. (2015). The first

one is Image Classification which denotes the prediction of an object type (class) in a

cropped image. The next is (Single-)Object Localization which finds the type and de-

fines a bounding box around the objects in a given cropped image. The third is Object

Detection/Recognition which expands the first two, giving an object classification with a

corresponding bounding box of all objects in a given image, not just one. Apart from

these three main terms for the stages of object recognition exist other more specific ones

for different sub-tasks. A specification of general object detection is Object Segmentation

which gives not only the objects bounding box, but rather all the pixels on the image it

occupies (Russakovsky et al., 2015).

Lastly, the term Pose Detection/Recognition brings the 2D information of the image into

the third dimension, trying to give the detected objects rotational and translational in-

formation relative to the camera, which took the given image. The terms detection and

recognition are interchangeable and are used by different researchers but mean the same

thing. In this thesis, the preferred term will be object recognition.
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Figure 5: What defines a chair? Comparison between different kinds of chairs1 2 3.

4.2 What makes it difficult?

Even after almost sixty years of research the problem of object recognition is not wholly

solved, even though many systems are already very good at correctly recognizing hundreds

of different object classes, it is not even close to human-level object recognition. Only un-

der the most simple conditions (few object, no occlusion, controlled illumination) is the

task of object detection considered solved propose Andreopoulos and Tsotsos (2013) (An-

dreopoulos & Tsotsos, 2013). Mostly solved aspects are the environmental effects, which

can change many properties of objects. The lighting conditions, even between dimly lit

and bright sunlight, already change the colors of an image/object. Not to mention col-

ored light, which alters them completely. Having occlusion or simply different orientations

of objects changes their visible shape and can make them look very different in images.

Simply relying on color detection or outlines is not a viable solution for these changes.

But with modern approaches, many of these basic discrepancies in objects can already be

overcome.

What makes classifying all objects even for only one class still extremely hard is their

massive variety, called within-class variation. Even something trivial like a chair has great

diversity, as figure 5 demonstrates. Color, shape, amount of legs, and material are all

different between these three chairs. The main chair-defining characteristics are: you can

sit on it (horizontal surface) and in this case, it has a backrest, but that may not even

be required for a chair. To solve this problem and be able to extend the classification to

yet unseen, newly designed, chairs would maybe require a complex reasoning structure

that can extrapolate and cross-reference specific aspects. Ot it could have the ability to

extract the commonalities of previously learned chairs and differences between these and,

for instance, a couch. Whatever the solution is, the complexity of replicating what humans

can easily identify as a chair is a highly difficult task yet to be perfectly solved. These

remaining problems are discussed in more depth in the survey of Zou, Shi, Guo, and Ye

(2019) (Zou et al., 2019).

Pose recognition is a special case of object recognition and therefore inherits its difficulties,

which makes it an even harder task because it has some additional hurdles itself. First, it

1http://pngimg.com/download/6862
2https://commons.wikimedia.org/wiki/File:Ngv design, ron arad, tom vac chair, 1997.JPG
3https://de.wikipedia.org/wiki/Datei:Ngv design, frank o. gehry, wiggle side chair, 1972.JPG
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Figure 6: Visualization of depth-size ambiguity. a) Two objects with different sizes and
distances that, when projected on the screen, have the same size. b) Screen view of the
small object. c) Screen view of the big object.

has an even bigger problem with rotational or occlusion-based ambiguity, as it makes it

impossible to know the exact pose, even for humans. As Manhardt et al. (2019) point out

in their research, which addresses this problem specifically (Manhardt et al., 2019). The

added dimension, the distance to the camera, is calculated based on the camera parame-

ters (dimensions, focal length, etc.) and the object size. As one might expect, if the object

to be positioned exists in multiple sizes, the distance calculation from the camera may be

wrong. It may take the wrong object-size, and therefore place it closer or farther away

from the camera as it is in reality. Figure 6 demonstrates how two differently sized object,

which look the same in an image (different colors only for readability), may actually be

differently sized, only placed at different positions in space. Lastly, the majority of modern

solutions are based on neural networks, which need a huge amount of training data for

learning. These are pretty easy to manually label for standard object recognition, where

a square is drawn around the object in question on each training-image. For many pose

recognition algorithms, this 2D square is transferred into the third dimension which makes

labeling them a hard and arduous task. Seeing the rotation of the object and correctly

placing its 3D bounding box accurately on the image is additionally not very precise.

All these problems lead to the fact, that careful considerations about the scope and exact

problem statement need to be made when designing or building a pose recognition system.

For example, leaving out obscure objects or having a partly controlled environment, in

which all objects are known beforehand.

4.3 Approaches to object-pose recognition

Over the years a few different approaches were popular in the field which still have some

advantages and disadvantages over each other. The three most important ones will be

discussed here. They are feature-based, template-based, and convolutional neural network-

based approaches.
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4.3.1 Global and local feature extraction

The basic idea of this approach is to extract specific attributes from the image, called

features, which drastically reduces the problem space from the high dimensionality of the

image resolution. These features are categorized into local and global features. Global

features contain information that encodes the whole image, e.g. a histogram of the color

intensity. The fact that they encode the whole image makes global features susceptible to

background clutter and occlusion. For this reason, they are often used for direct image

matching and in combination with the local features to enhance object recognition. As

the name implies, local features are deployed only on parts or a region of an image. This

is especially handy for object detection, because it ignores the image background, and

focuses only on the important parts. These features may be color, texture, or specific

shapes in the image (Lisin, Mattar, Blaschko, Learned-Miller, & Benfield, 2005).

One of the first recognition systems using local features was developed by Lowe (1999),

who expanded on the ideas of Schmid and Mohr (1997) and used the Scale Invariant

Feature Transform (SIFT) algorithm to extract transform, scaling and rotational

invariant features from a given image for detection purposes (Lowe, 1999; Schmid &

Mohr, 1997). He points out that his approach is very robust against occlusion because it

only needs three keys (which are key locations in the image/object) to identify an object.

The more detailed an object is, the more keys it has making it easier to detect. The

detection is robust up to 60◦ rotation away from the camera in any direction for planar

objects. For a 3D object with rotation in depth, it has a rotational range of about 20◦.

Other similar approaches inspired by the work of Schmid and Mohr (1997), which were

published around the same time where Allezard, Dhome, and Jurie (2000), Baumberg

(2000), Mindru, Moons, and Van Gool (1999), Tuytelaars and Van Gool (2000). All of

these approaches, including the one from Lowe (1999), where evaluated in a study by

Mikolajczyk and Schmid (2005), where Lowe (1999)s outperformed most others

(Mikolajczyk & Schmid, 2005).

Lepetit, Pilet, and Fua (2004) treat the point matching of extracted local features as a

classification problem. During the training phase, they perform statistical classification

of a large number of synthesized views of the keys. This produces a compact description

of said key points, which can then be used during runtime. The goal of these prior offline

calculations is to offload the work for higher runtime performance. To extract the object

pose a standard RANSAC-based method is applied after the image correspondence is

found. Their experiments showed, that the pose estimation for 3D boxes and faces is

reliable and accurate from most view angles, but they do not give any exact numbers on

the results (Lepetit et al., 2004).

A different idea came from Savarese and Fei-Fei (2007) who proposed a system that

constructs a model of an object out of detected parts. These parts are distinct sections

with many local invariant features and get connected through their projective relation.

Figure 7 shows how such a model is internally connected. With this approach, they

generate compact representations of the appearance and geometry of the corresponding

object class. The object pose is obtained for each part in the model during the

construction phase. The view of a part that has the most area facing the camera is its

base-pose. After the recognition of an object, the pose can be found by looking at the
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Figure 7: Visualization of object model part connections. a) three sample training images,
b) the internal model graph and c) a more intuitive visualization of the graph (Savarese
& Fei-Fei, 2007).

visibility of each part and on that basis, the pose is estimated (Savarese & Fei-Fei, 2007).

Building on this work Savarese and Fei-Fei (2008) extended their system to recognize

previously unseen object poses. This is done by synthesizing two existing views of

connected parts into a new one during the recognition phase. Through linear

interpolation, a new, synthetic view is created which is used to predict the unseen object

pose (Savarese & Fei-Fei, 2008).

The Vuforia Library is an AR Software Developement Kit (SDK) that is widely used for

commercial applications. It is able to track multiple planar objects simultaneously as

well as a couple of 3D objects via natural local feature extraction. Not much is known

about the actual algorithms used, but it seems to be based on the research paper by

K. Kim, Lepetit, and Woo (2012). The proposed system has a small database of 3D

objects (around 50) of which up to 14 different objects can be tracked simultaneously

and in real-time. Additionally, it enables the user to integrate new objects of primitive

shapes very fast and easy. The key to its real-time capabilities is a clean separation of

tasks into a foreground and background thread, of which the foreground thread tracks

the feature points for every consecutive frame and the background thread recognizes the

targets and estimates the 3D poses.

Figure 8 shows the process of adding new objects into the database. The user can add

local coordinates on one of the captured frames to outline the base shape of its primitive

and extrude that side into 3D space. Afterwards, the object is added to the database for

matching, which holds a description of the corresponding local features inside the user

made outline (K. Kim et al., 2012).

Especially after K. Kim et al. (2012) published their work, the feature-based object and

pose recognition is pretty reliable and usable in real scenarios as shown by Vuforia. The

biggest disadvantage is the need for local invariant features on objects in order to track

them reliably. Many objects in the real world, however, do not have the appropriate
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Figure 8: Procedure for adding a primitive object (K. Kim, Lepetit, & Woo, 2012).

Figure 9: Two complementary modalities, gradient, and surface normals, for object tem-
plate representation (Hinterstoisser, Cagniart, et al., 2011).

number of features for robust tracking and therefore exceed the limits of approaches based

on feature extraction.

4.3.2 Template-based

The template-based approach for object pose recognition was developed in direct

response to the fact that local feature extraction is often dependent on object texture

and natural distinctive features. In addition, it has advantages to other statistical

approaches that require a learning phase to build the classifier, which generally takes

time and is required for every new object. It was mostly Stefan Hinterstoisser who lead

the research on this template-based pose recognition, which is the only distinct different

approach to neural networks that started to emerge at that time.

His work is inspired by Dalal and Triggs (2005) and their Histograms of Oriented

Gradients (HOG) algorithm (Dalal & Triggs, 2005). In Dominant orientation templates

for real-time detection of texture-less objects Hinterstoisser, Lepetit, Ilic, Fua, and Navab

(2010) first presented the approach they named Dominant Orientation Templates

(DOT). The basic idea is to use the gradient orientation of an image, which is a global

feature, and compare it with an input image gradient orientation at a specific location.

For comparison of the orientations only the magnitude of the gradients, not the actual

values, are used. This makes it more robust to illumination changes and noise. For more

tolerance to small transformations and better computing performance the images are

divided into regions on a regular grid and only the dominant orientation in that region is

used, meaning only the gradient with the biggest magnitude has an impact on matching.

For performance evaluation, they performed a comparison experiment against a few

different approaches (nine others in total). They used the Graffiti and Wall Oxford

datasets in which they increased the viewpoint angle from 20◦ to 60◦. They not only
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Figure 10: Regularized grid around an icosahedron for viewpoint taking of an object 3D
model (Hinterstoisser et al., 2012).

outmatch all other tested approaches but achieve a remarkable 100% matching score for

both the Graffiti and Wall datasets (Hinterstoisser et al., 2010).

One big issue with this approach is its susceptibility to background clutter, which

quickly degrades the results up to a failure of recognition. To address this problem

Hinterstoisser, Cagniart, et al. (2011) changed their use to only the dominant orientation

of a regular grid space. A similarity measure for the gradient orientation is used, which

searches the neighborhood of an associated gradient location and tries to find the most

similar orientation in the input image. This results in finding almost only the gradients

on the object contours, not the background objects, making it much more robust to

background clutter. Further enhancement of their previous approach is done by the

added possibility to also integrate depth data as a second classification property. They

extract the surface normals and process them in the same way as the gradient

orientation, which leads to mainly finding matches on the object itself. Figure 9 shows

the complementary nature of these two modalities, making the object recognition quite a

bit more robust (Hinterstoisser, Cagniart, et al., 2011; Hinterstoisser, Holzer, et al.,

2011).

While the results of Hinterstoisser, Cagniart, et al. (2011) are also giving the pose of the

recognized objects, it is only a rough estimate, because of the sparse view-angles of the

created templates. In robotics and other computer vision tasks, a precise pose is most

often necessary, which is why Hinterstoisser et al. (2012) revised their previous work

again to enable the possibility of acquiring precise orientation. The approach to produce

a precise pose is the simple idea to regularize the encoded viewpoints to cover the whole

object. Firstly, online template learning was moved to be offline and not user-operated

anymore. A 3D model of the object is utilized to create all required views. In this new

offline template learning stage, the images for encoding the template are taken in a

spherical regularized icosahedral grid, shown in figure 10. On every red dot in the figure,

a new training image is taken. Between each new viewpoint the camera is rotated by an

angle of approximately 15◦ to cover the whole object. To note here is that they only

cover the upper hemisphere of the object, as visible in figure 10 which only enables a

rotation detection of 0-360◦ around the object and ±45◦ tilt (not an arbitrary rotation).

Additionally to the new offline training stage, they created a new dataset for future
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Figure 11: Example of the basic structure of a CNN.

comparisons with other pose detection approaches. It contains 15 mostly texture-less

objects with over 1100 reference images each and the ground truth pose to compare

against. In the performed experiment they had an average detection rate of 96.6% for all

objects (Hinterstoisser et al., 2012).

4.3.3 The era of convolutional neural networks

As the computing power of modern machines increased significantly, research on artificial

neural networks for machine learning had a resurgence. Especially deep neural networks

brought new progress in the field and based on that the new sub-class of Convolutional

Neural Networks (CNN) was created. These are especially well suited for high

dimensional input data because they convolve the input across their multiple layers.

Similar to other deep neural networks, CNNs have one input layer, an output layer, and

multiple hidden layers in between (hence the name deep neural network). Figure 11

shows a basic CNN structure which reduces the high dimensionality of the input down to

a certainty value for the best matching trained objects. Goodfellow, Bengio, and

Courville (2016) explain in their book Deep Learning the workings of deep neural

networks and specifically, starting from chapter 9, CNNs in detail (Goodfellow et al.,

2016).

The modern CNN structure was developed for recognizing handwritten digits by

LeCun, Bottou, Bengio, Haffner, et al. (1998) in 1998 (LeCun et al., 1998). Utilizing

CNNs was re-popularized by Krizhevsky, Sutskever, and Hinton (2012), which won the

ImageNet Challenge1 in 2012, which focused only on 2D object recognition and not on

full 3D pose. From that point onward CNNs became standard in object recognition and

in the last couple of years it also became the basis for most pose detection systems.

In terms of performance, PoseCNN is a very successful network architecture for 6D pose

estimation created by Xiang, Schmidt, Narayanan, and Fox (2017). It decouples the

different tasks of pose estimation into three distinct components. First, it labels each

pixel in an input image and assigns them to possible objects. Secondly, it predicts the

objects 2D center as well as the distance to the camera center with the voting of each

pixel from a corresponding object label. With the help of the intrinsic camera

parameters, this can predict the 3D location of the objects relative to the camera.

1 http://www.image-net.org/challenges/LSVRC/
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Finally, through a regression of the convolutional features extracted inside the bounding

box, a quaternion representation of the object rotation is generated. This is achieved by

running the previously predicted visual features through 3 fully connected layers, which

have two different optimization functions, one specifically to handle object symmetry.

Their method uses just RGB image data for the 6D pose prediction, but can be coupled

with the Iterative Closest Point (ICP) algorithm when depth data is available to boost

the overall precision of pose estimation. The experimental results show slightly higher

scores than comparable state-of-the-art approaches of that time (Xiang et al., 2017).

Around the same time as PoseCNN was developed, Tekin, Sinha, and Fua (2018)

approached the problem from a different perspective. Inspired by the YOLO-network

from Redmon and Farhadi (2017), they based their architecture around the idea to only

have a single processing stage, which grants them real-time capabilities (Redmon &

Farhadi, 2017). The standard are methods that use at least two stages, or as PoseCNN

three, to predict the pose which takes additional computing time. The CNN they use

predicts the 2D projections of all eight corners of the 3D bounding box and a center

point for one object. Then uses the Perspective-n-Point (PnP) algorithm to extract a

6D pose. For training, they point out that only the 3D-bounding-box of training objects

needs to be known, not a complete 3D model. The experiments show that the network

outperforms all other compared state-of-the-art approaches not only in prediction

accuracy but also in computational runtime. The runtime speed is an impressive 50

Frames Per Second (FPS), which is ten times higher then (Kehl, Manhardt, Tombari,

Ilic, & Navab, 2017)s approach, which is also single staged (Tekin et al., 2018).

One disadvantage of many CNN-based systems is the fact that labeled training data is

required for every object class or type. In the case of 6D pose, this data has a high

complexity in contrast to the generation of data for 2D recognition and is, therefore,

time-consuming to generate by hand. One approach to tackle this problem is to generate

this data with synthetically rendered images from 3D models, which brings its own

problems. Even photo-realistic rendering is not exactly similar to real photos and

degrades the performance of the trained network. The minute differences produce

different statistics on which the networks train, this is often called the Domain Gap.

Hinterstoisser, Lepetit, Wohlhart, and Konolige (2018) elaborate on this and developed

an approach that uses a pre-trained deep network, freezing the first layers which are

responsible for lower-level image feature detection like edges, then training the rest

with only synthetic images. This approach is simple and mostly overcomes the

aforementioned problems (Hinterstoisser et al., 2018).

Sundermeyer, Marton, Durner, Brucker, and Triebel (2018) focus on the problem of

expensive training data and object symmetry/partial occlusion, which creates ambiguous

orientation, having also computational performance in mind. Their approach is

two-staged and uses a Single Shot Multibox Detector (SSD) (W. Liu et al., 2016) to

identify objects in the image and generate an image crop for each, then feeding this

output into their Augmented Autoencoder (AAE) for pose determination. The idea

behind the AAE is to only implicitly learn the pose representation, as opposed to

explicitly on labeled data, from rendered 3D model views. The augmentation controls
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Figure 12: Training of the AAE. a) is a rendered comparison batch, b) is the same batch
with domain randomization and c) is the reconstructed pose after 30000 iterations (Sun-
dermeyer, Marton, Durner, Brucker, & Triebel, 2018).

what properties the latent representation learns, and to which it will become invariant.

To achieve this they use Domain Randomization, which alters the rendered images in

regards to lighting, occlusion, background, saturation, etc. as described by (Tobin et al.,

2017). The implicitness of the representation learning combined with the domain

randomization generates robustness against many of the previously mentioned problems

like occlusion and symmetry. Figure 12 shows the training procedure of the AAE. The

important part is the encoder/decoder stage, where the encoder produces a reduced

representation of the high-dimensional input, which the decoder can later convert back

to the higher dimensionality. For identifying pose on unseen images the image crop will

then be encoded to this representation, which is invariant to all the domain randomized

features, and compare it to the learned representation. The best fit is then chosen which

inherits the originally encoded object pose (Sundermeyer et al., 2018).

DeepIM is an approach by Yi Li, Wang, Ji, Xiang, and Fox (2018) that focuses only on

pose accuracy and refinement, not as much on computation time or data generation.

Their idea is an iterative CNN, that uses an initial pose estimation. It refines this

estimation iteratively by rendering the previous pose with the 3D model of the

corresponding object and matching this synthetic image against the original input. A

mask helps to segment the object and zooming into the image at the correct location to

make the object larger and ignore the background or other objects. The reason to

enlarge the object is to gain more detail/features across the whole image that gets fed

into the network. Their approach has a very good performance in comparison to other

systems like PoseCNN, to which they compared it. They do not talk about the

computational time it takes the network to generate a result, but the iterative nature

and rendering stages hint to poor speed (Yi Li et al., 2018).

Besides the here described approaches there are many others, which focus on similar

problems using only RGB image data. For further readings, here are a few interesting

29



ones: (Rad & Lepetit, 2017), (Pavlakos, Zhou, Chan, Derpanis, & Daniilidis, 2017),

(Peng, Liu, Huang, Zhou, & Bao, 2019).

Different from all aforementioned methods, which use only RGB data, the following

approaches utilize additional depth data from a RGB-D camera. This boosts the

performance of pose estimation, because of the added dimension of depth. In the last

years, RGB-D cameras became much cheaper, making them more viable to use. But like

it is with everything, this approach brings its own additional problems. For one, normal

depth cameras have a sweet spot in which they generate usable depth data, but

everything further away or too close degrades in data quality. Additionally integrating

this additional depth channel into the pipeline and using the information properly is not

as easy as one might expect, because the depth channel has a different space compared

to the RGB data.

DenseFusion from C. Wang et al. (2019) finds a way to tightly couple the RGB-D input

data and use it to get much more robust results in cluttered scenes and cases of

occlusion. They generate features from the two channels (color and depth) separately

and therefore retain the intrinsic structure of the source data. After this feature

extraction, they perform a per-pixel dense fusion, which is local instead of global,

making it more robust to clutter and background noise. Fusion is the procedure of

bringing the two feature types, namely geometric and color, together, by projecting each

3D point onto the corresponding 2D-image-feature plane with the use of the intrinsic

camera parameters. The resulting per-pixel features are then fed into a network that

predicts the 6D pose. In contrast to PoseCNN which could use depth data to improve

the pose estimation in a concatenated ICP refinement step, this approach is much faster

and has fewer problems as aforementioned clutter and background does not affect it.

Their experimental results use PoseCNN+ICP and others as a comparison. DenseFusion

has a slightly better performance than PoseCNN in cluttered scenes and is 200 times

faster (C. Wang et al., 2019).

4.4 Bridging the research areas

After looking at research that focuses almost solely on object-pose recognition, the follow-

ing sections discuss research that integrates pose recognition into different scenarios. It

will cover the topics relevant to this thesis, robotics, and augmented reality. Ending with

research on systems that combine all three main points of this literature review.

4.4.1 Robotics and object-pose recognition

Having a robotic arm grab objects autonomously is crucial in many scenarios, especially

when the environment is unknown. The actual difficulty to accomplish this task depends

on the specific scenario. Collet, Berenson, Srinivasa, and Ferguson (2009) were able to

build a robotic system that is able to grab objects on its own pretty reliably by restrict-

ing the objects to be only highly textured and known beforehand. This enables them to

adapt the core algorithm introduced by Gordon and Lowe (2006), which itself is directly

based on Lowe (1999)s previously discussed pioneering work, for local feature extraction
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Figure 13: End-effector consisting of a crevice nozzle and suction cup. It lifts objects with
the suction strength of an attached vacuum cleaner (Eppner et al., 2016).

(Gordon & Lowe, 2006; Lowe, 1999). With these restrictions in place, their system can

detect multiple objects poses simultaneously and is robust to outliers, occlusion, and il-

lumination changes. Using an existing path planning algorithm for their robotic arm,

they conducted an experiment to evaluate the performance of their system. They build

a cluttered scenario out of four different objects (a can of cola, a juice bottle, a cereal

box, and a notebook). Each object was grasped 25 times amounting to 100 tries, with 91

succeeding. Additionally, they measured the rotation error of the pose prediction, which

degraded slightly for rotations higher or lower than 45/-45 degrees for some objects. The

stated reason for this is the sparseness of local features at those rotations. As future work

they pursuit to integrate multiple camera views or even active sensing to move the arm

into a better viewing position, which would alleviate occlusion problems and rotational

degradation (Collet et al., 2009).

In 2015 the online store Amazon posed the Amazon Picking Challenge, to accelerate re-

search on solving their specific tasks in the warehouse. Autonomously finding and grasping

objects on shelves. They posed this challenge three years consecutively but stopped in

2018 to switch their focus to direct funding of specific research. In the paper of Eppner et

al. (2016) they describe their winning system from the 2015 challenge. Their end-effector

for picking objects was a clever design, which alleviated some problems a normal gripper

might have. The usage of a vacuum cleaner and its crevice nozzle equipped with a small

suction cup at its tip helped picking objects of up to 1.5 kg. The setup is shown in figure

13. This slim design has the big advantage that it can grasp objects even in small spaces,

e.g. standing in between other objects. The object detection is done based on RGB-D

data from a camera on the robot’s forearm. The arms agility helps to scan the shelf where

the objects are located. First, they track the shelf itself, with all its object bins, via the

depth map, and extract local features from the bin regions. With this information, they

estimate the probability that a pixel belongs to an object and then assign labels to each

of the estimated object pixels. With these labels, the objects get segmented in the im-

age, and finally, a bounding box is fitted with an ICP-algorithm. Jonschkowski, Eppner,

Höfer, Martin-Martin, and Brock (2016) describe this detection process in a second paper

(Jonschkowski et al., 2016). Their evaluation was the Amazon Picking Challenge where

they scored 148 of 190 points, taking 87 seconds per pick. This means they were able to

pick ten of the twelve objects and could maximally try to pick 14 times in the 20 minute

time frame of the challenge. In comparison to second- and third place, they won by a vast

margin, as those only scored 88 and 35 points respectively. They attribute the reason for
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this large margin to the second place by clever design decisions, not only for the gripper,

but different things like the camera placement and leveraging their mobility for the gen-

eration of better RGB-D data results (Eppner et al., 2016).

The winner of the Picking Challenge two years later in 2017 had a very interesting ap-

proach for picking objects out of a bin. In that year’s challenge, you had to stow specific

objects from a very cluttered bin into a different one. Zeng et al. (2018) split the problem

into two parts. Firstly, they use a category-agnostic affordance prediction algorithm to

calculate a grasping possibility. This selects one of four different primitive grasping behav-

iors to execute on one of the objects in the bin because it is category-agnostic this object

selection is random. Only in the second stage, they use a cross-domain image classifica-

tion framework on the picked object to identify it. This network can handle previously

unseen objects by matching them with product images from the web (as it makes sense

for Amazon products). Through this two-stage procedure, the object is not occluded by

anything and much easier to identify. When it is identified to be one of the correct objects,

it is stowed into the output bin. If it is not one of the correct objects it is placed into an

intermediate bin. As a side note, because of this approach, the system does not actually

use pose detection, because it only makes an affordance prediction. The challenge results

were a 100% success rate for recognition of the picked object and 66.65% for picking at-

tempts. They where the only entry to succeed in stowing all objects within the allotted

time-frame (Zeng et al., 2018).

These examples show how individualized these systems still need to be in order to per-

form well enough for real use-cases. But in actuality, it is remarkable that even at the

intersection of two only partially solved research topics such performance can be achieved.

4.4.2 AR and object-pose recognition

Similarly to robotics, AR and pose recognition have a natural connection as well. The

fact that AR and robotics have the goal to interact with the physical world in some way,

makes obtaining useful 3D information very important. The previously mentioned AR

glasses, like HoloLens, use their sensors to make a 3D mesh of its surroundings to

position (register) itself in space. This problem is called Simultaneous Localization and

Mapping (SLAM) and is similarly important for autonomous robotics as in AR, as

Durrant-Whyte and Bailey (2006) describe in their article (Durrant-Whyte & Bailey,

2006).

What SLAM does not offer, at least in current AR technology, is actual recognition of

objects in the constructed 3D scene. Because of this, different systems were proposed to

solve this problem. Garon, Boulet, Doironz, Beaulieu, and Lalonde (2016) developed a

system that provides additional high-resolution data on the HoloLens. They attached a

RealSense depth-camera to it, which communicates across a desktop PC with the

HoloLens. The depth data that is sent to the PC can be processed and then send back to

the HoloLens, which is preferable to just sending the raw data because of bandwidth

limitations. They present the usefulness of their system by implementing pose detection

for small objects using the template-based approach mentioned in section 4.3.2 by

(Hinterstoisser, Holzer, et al., 2011), (Garon et al., 2016).

Sun, Kantareddy, Bhattacharyya, and Sarma (2018) used the proposed system from
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Figure 14: Augmentation of objects with sensor data from RFID chips. Left: Fill state of
a cup or bottle. Right: Temperature of liquid in cup (Sun, Kantareddy, Bhattacharyya,
& Sarma, 2018).

Garon et al. (2016) as a basis for their AR tool X-Vision, which can detect objects and

their corresponding poses via the RealSense depth camera and additionally extract

different sensor information via Radio-frequency Identification (RFID) chips attached to

these objects. Their object-pose detection pipeline uses a basic local feature extraction

technique, refined by an adapted version of the ICP algorithm using the point-cloud data

of the depth camera. A parallel pipeline is collecting the RFID sensor data with a simple

antenna plus reader setup. Both the pose and RFID data is send to a cloud server,

which processes them and sends the resulting data to the HoloLens. Figure 14

exemplifies some possibilities of information that can be displayed to the wearer of the

AR glasses. An experiment showed that a stable range for accurate recognition between

the camera and target is from 40 cm to 75 cm and for the readability of the visualization

around 100 cm to 150 cm (Sun et al., 2018).

One of the most commonly advertised applications of AR is assisting with assembly

tasks. Y. Wang, Zhang, Yang, He, and Bai (2018) developed an assembly assistance

application, which is marker-less and has stable tracking, which is normally not the case

and therefore a big negative of most similar applications. Markers are often not practical

or possible in industrial settings, which reduces the usefulness of such systems. Y. Wang

et al. (2018) based their tracking, similar to (Garon et al., 2016), on the work of

(Hinterstoisser, Cagniart, et al., 2011) combining it with the Oriented FAST and

Rotated BRIEF (ORB) algorithm developed by Rublee, Rabaud, Konolige, and Bradski

(2011). ORB is a fast alternative to the aforementioned SIFT (4.3.1), which is two

orders of magnitude faster with similar matching results (Rublee et al., 2011). Y. Wang

et al. (2018) use a common two-stage approach (offline and online phase), where the

offline part generates templates for each assembly step, from which the ORB features are

extracted. These results are saved in a Extensible Markup Language (XML) file, for
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ease of access to other systems. In the online part, these features are extracted from the

live camera image and matched with the previously saved data to calculate the camera

pose. Concluding with overlaying a 3D model of the next assembly pieces to be attached.

Through the use of the template matching in combination with the ORB feature

extractor, which are two very time-efficient algorithms, they achieve stable 30 FPS

(Y. Wang et al., 2018).

In contrast to Y. Wang et al. (2018), Su et al. (2019) used a CNN as the recognition

backbone. Their focus is the detection of multi-stage objects, which Y. Wang et al.

(2018) did not consider and simply have the user pick the current assembly stage. Su

et al. (2019) combine two CNN architectures to generate a new network that has a state

estimation and pose estimation branch. The used networks are TridentNet (Yanghao Li,

Chen, Wang, & Zhang, 2019) and R-CNN (Ren, He, Girshick, & Sun, 2015). The

difficulty for stage detection is the high ambiguity because of the similarity of the objects

and the fact that the different stages have their own geometric center. This means the

pose cannot easily be calculated based on the same local coordinate system. Through

their combination of the network structures, they solve this problem by not relying on

the 2D bounding box. They achieve 30 FPS as well because they split the detection of

pose and stage. The higher performant and more important pose detection runs every

frame (at 30 FPS) and the stage estimation with 2 FPS. After pose and stage of the

object are found, the next assembly step is overlaid in AR similar to Y. Wang et al.

(2018) (Su et al., 2019).

Hettiarachchi and Wigdor (2016) have a much more uncommon and novel use for pose

recognition in AR. They use a Microsoft Kinect to obtain depth data for their AR

system, which they call Annexing Reality. The idea is to integrate haptic feedback into

AR by dynamically searching the environment for objects that have a similar shape as

the virtual models they want to display. Then overlaying the 3D model over the real

object, which acts as a proxy for an actual prop with the exact shape of the virtual one.

In figure 15 an example of the working system is shown, which tries to find the best fit

for all available 3D models and real objects. This system works by finding primitive

shapes in the point cloud generated by the Kinect and scaling the 3D models to fit the

proxy objects better. To find these matching objects they detect horizontal surfaces in

the environment, extract objects on top of them, and extract their features (like size,

primitive shape, orientation). After this is done, all real objects are compared with all

virtual ones and a voting scheme decides if they fit or not. When an object is identified

for tracking, their object pose tracking pipeline takes over and positions it at the correct

pose in space, realigning it every frame. The tracking pipeline cuts a cubic area around

the rough pose of the object in the point cloud and performs an ICP algorithm on it.

The rough pose is generated with a RANSAC based pose estimation. A small study was

performed to test the User Interface (UI) and the satisfaction with the system’s

performance. The results showed that the participants were generally satisfied, but the

predictability of the voting scheme needs to be improved in the future (Hettiarachchi &

Wigdor, 2016).
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Figure 15: Annexing Reality finds the best fit for 3D models in the real world. (Het-
tiarachchi & Wigdor, 2016).

One important fact becomes clear when looking at AR applications with pose recognition.

Performance is very important for the usability of different applications. Not only for the

FPS of rendering but also for pose estimation. If pose recognition is done too sparsely

it cannot follow the users’ movement. One problem here is the inherent mobility of AR

devices like smartphones or the HoloLens, which limits their computing power. Zhang,

Han, and Hui (2018) for instance offload the pose estimation to an Edge Cloud to reduce

computational load (Zhang et al., 2018). Another approach by C.-H. Lin, Chung, Chou,

Chen, and Tsai (2018) is to involve GPS data to only consider objects in close proximity

to the user in their navigation app (C.-H. Lin et al., 2018). To only name a few.

4.4.3 Combining the three: Robotics, AR and object-pose recognition

This final section deals with research focused on the same intersection of technologies which

were discussed in the previous three chapters of this thesis, robotics, AR, and object-pose

recognition. One direction of research is the visualization of sensor data specifically for

autonomous robots and their object detection systems. These are primarily intended for

the development and debugging of such systems with help of AR visualization (Chen,

Wulf, & Wagner, 2006; Stilman et al., 2005). This idea makes sense because it makes

debugging and refining the recognition systems much easier when you just see what the

robot thinks it sees/recognizes.

More closely related to this work is the research done by Gao and Huang (2019) (Gao

& Huang, 2019), Gong, Ong, and Nee (2019) (Gong et al., 2019) and Rudorfer, Guhl,

Hoffmann, and Krüger (2018) (Rudorfer et al., 2018). All three research teams use AR

and object detection as a means to simplify the work of programming a robot for pick and

place tasks. Gao and Huang (2019) and Gong et al. (2019) both utilize a projection-based

augmented tabletop and acquire RGB-D data from the Kinect 2 camera. Despite their

many similarities they do not refer to each others’ work, this may be due to the fact that

two of the papers came out the same year, 2019. In the following the differences between

the approaches are described.

Gao and Huang (2019) mount the Kinect 2 to the ceiling and use it for tracking the user’s
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Figure 16: Visualization contrast of three similar robot programming systems through
AR. a) is the projector-based tabletop by (Gao & Huang, 2019). b) is the view through a
HoloLens, by (Rudorfer, Guhl, Hoffmann, & Krüger, 2018). c) is a second projection-based
AR system by (Gong, Ong, & Nee, 2019).

hand gestures as well as the objects lying on the table. A point-cloud library uses the

generated data to detect the objects poses on the table, which are then refined by the use

of the RANSAC algorithm. Their focus lies on the interface projected on the tabletop,

which can be used to program the robot with simple touch gestures. Figure 16 a) shows

how the user can define areas in which i.e. objects should be picked and a destination area

where picked objects are then placed by the robot. As an evaluation of their system, they

performed a user study with 17 participants in which they tried to determine whether

their system is more efficient than the built-in system of the robotic arm, in regards to

learning time, confusion, and programming speed of the user. Their results indicate that

the proposed interface was better on all measured attributes (Gao & Huang, 2019).

Gong et al. (2019) in addition to the Kinect 2 use OptiTrack an infrared motion tracking

system. As a programming platform, they use the Robot Operating System (ROS), which

is widely used in the world of robotics. Most of their subsystems use existing modules from

ROS, like the Object Recognition Kitchen (ORK) or RVIZ (ROS Visualization). The role

of the augmentation on the tabletop is to give the user guidance information through the

process of task definition (robot programming). The help consists of information or error

text prompts, buttons to select desired configurations, and a shadow of the selected object

at the pointer location. This shadow, therefore, shows the objects placing location in

2D. The visualization is visible in the comparison figure 16 c). For placing they assume

the tabletop as standard height, except when an object is detected at that location then

they add the additional object height to it in order to not crash into anything. With

36



Figure 17: Example of visual cues for HRC. Robot working area on the ground and
assembly helper on the car door (Ganesan, Rathore, Ross, & Amor, 2018).

their interface, the user can define several pick and place tasks, that are then executed in

order. Gong et al. (2019) call this assembly planning, as each task can be part of a bigger

assembly task (Gong et al., 2019).

In contrast to Gao and Huang (2019) and Gong et al. (2019), Rudorfer et al. (2018) focus

on the adaptability of their system and separate each module they use to make switching

them out very easy. In this proof of concept, they employ notably simple components

which later on may be switched out, corroborating their modular design. In this system

the user sees which objects are detected through the HoloLens’ display, via visualization

of the objects 3D model overlay, visible in figure 16 b). Now the user only needs to place

the object at a different position, through the HoloLens gestures he can select an object

and new position via air-tap. The object detection is using a simple rectangle recognition

of the library OpenCV 1, limiting the possible detection to very simple blocks (Rudorfer

et al., 2018).

The final paper is called Better Teaming Through Visual Cues by Ganesan, Rathore, Ross,

and Amor (2018). Their system is designed for HRC and displays visual cues. Firstly, it

provides instructions for procedural tasks by recognizing the pose of the assembly piece and

projecting the next steps onto the work environment. Secondly, they give robot attention

cues, which gives the human information on what the robotic arm will be doing and where

it may not be save to stand. Figure 17 shows both types of cues. The working area of the

robotic arm on the ground and some blue assembly helper lines on the car door. Unlike

the previously mentioned approaches, they spend a considerable amount of research into

the pose recognition focusing especially on occlusion. Which makes sense, because the

human worker is often in front of the assembly piece, occluding it. They dedicated a

second paper to their algorithm Brahmbhatt, Amor, and Christensen (2015), in which

they describe their approach. It is based on the HOG templates mentioned in section

4.3.2. Brahmbhatt et al. learn not only object templates, but also occlusion templates

which are used when the matching is weak. The object template in that area is then

1https://opencv.org/
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replaced with the occlusion template, which is then used for matching the object.

Finally, a user study with 15 participants was performed, in which they tested the effi-

ciency and effectiveness of their visual cues against a version with printed instructions and

a mobile screen. Additionally, they tested accuracy and understanding time for the three

types. A statistically significant improvement of their visual cues over the other two in all

tested categories was reported. Especially the task understanding time is only a fraction

for two of the three sub-tasks the subjects had to perform. Subjectively the participants

preferred the visual cues. Major positive themes were the perception of their own abilities,

the systems performance and the HRC experience in general (Ganesan et al., 2018).

The discussed research shows that often in these complex systems the actual pose recog-

nition part is very basic, with the exception of Ganesan et al. (2018). This makes sense,

due to the fact that the focus is often more on other parts of the system. In the ap-

proaches for robot programming the use of depth-cameras seems reliable enough to use,

especially because not a very high precision is needed. Gong et al. (2019) are interestingly

close to visual cues that will be used in this system, namely their shadow. Only their

projector-based AR limits them to 2D.
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Figure 18: Simplified overview of the developed application. The blue outlined area is
external from this thesis, by Franziska Rücker. The lighter shaded rectangles describe the
hardware devices, while the darker ones are logical components.

5 Method

With knowledge from the research, we can take a closer look at how the underlying

system is constructed and discuss why certain decisions were made. Figure 18 gives a

rough overview of the most important components of the system. Including the ones

from Franziska Rücker’s master thesis, which is marked with a blue border. A more

thorough description will be given in section 6.1. Here the important aspect is the

separation of what is part of this thesis and what is not. Additionally, it is important to

clearly state the constraints that had to be considered. These constraints are categorized

into different aspects, like the used technology, the working environment and the users of

the system.

Constraints

Users:

The target group are physically impaired people who are still mentally fit. Mainly

tetraplegics or otherwise paralyzed people who cannot move their lower body and are

bound to a wheelchair. The resulting system should help them integrate into work life,

assembling objects, and providing them with more autonomy.

Technology:

The Microsoft HoloLens is a see-through HMD-AR device that has built-in SLAM to

orient itself in space. For input, it provides simple gestures and additionally speech input

and head tracking through SLAM. This device not only fills all initial requirements

mentioned in 1.2 but is also available for our research.

The robotic arm is a KUKA iiwa, which is designed for HRC. It can lift up to 7 kg and

has a maximum reach of 80 cm. The seven joints give it the same DoF as human arms,

having almost infinite possibilities to reach a specific point in space within its reach. It is
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Figure 19: Workstation with the Kuka iiwa in its standard pose, from the view of the user.
The working area is outlined with a green rectangle.

equipped with torque sensors in each joint to prevent high force collisions for close-range

interactions. This arm was put in operation during the time of this thesis with the help

of Franziska Rücker and other members of the HCI-Group of the Westphalian University

of Applied Sciences and is the only available robotic arm for this project.

Environment:

We have a clearly defined region in which the robotic arm is working. This area is a

rectangular shape on top of a table with the dimensions 28,5 cm x 60 cm. The operator

sits in front of this table with a distance of about 120 cm. The working area was defined

in the early prototype this project is based on, because of the nature of assembly tasks

at hand (small part assembly) and the fact that our target group is not agile. The setup

is depicted in figure 19.

Robot Control

One of the big decisions for the operation of the robotic arm was to limit its main

movement to be in a specific horizontal plane, 40 cm above the tabletop, in order to

prevent collision while keeping the broad movement simple. The exact nature of the

movement will be presented in section 6.4. Additionally to the movement plane, the

decision was made to keep the gripper facing downward at all times. This reduces the

possible rotation to be only along the up-axis, keeping the control as lightweight as

possible. Figure 19 shows the standard pose of the robotic arm. This is an ambivalent

trade-off that was made because, on one hand, it limits the usefulness for assembly tasks

and to rotate a wrongly placed object quite a bit. On the other hand, it does simplify

many things for the control scheme, which is important for the user base. Making this

scheme as simple as possible, while maintaining all possible movements of the robotic

arm, was not the main focus of this project and therefore the decision was made in favor

of reduction and simplicity.

40



Input Modalities

For input modalities, we settled on speech and head movement. As highlighted in section

2.2 another option would have been eye-tracking or more technologically novel

approaches like brain-interfacing. The latter one were not considered, because they have

many different disadvantages like the need of additional sensors on the user

(brain-interface, EOG), additional technology which was not present, or they are in early

research stages and therefore not very stable (brain-interface) and many need calibration

for each usage. The last two disadvantages are also reasons why we disregarded

eye-tracking.

In previous research, we used the PupilLabs1 eye-tracker, which had a tedious calibration

phase and was still very unstable to the point of uselessness. This PupilLabs eye-tracker

is an attachment for the HoloLens, which was the reason for the poor performance. The

HoloLens fixation to the head is build to leave wiggle-room and oftentimes slides a tiny

bit on the user’s head during movement. For the eye-tracker, each movement of the

HoloLens ruins the calibration, because it assumes a fixed view on the eye. While an

external eye-tracker may not have these drastic disadvantages, they were not an option

because using HMD-based AR is the basis of the project and therefore the user will wear

some sort of device on his head occluding the eyes. Furthermore, it does seem that

eye-tracking is in general not at a point yet where it is a viable replacement for

head-tracking/head-pointing. Qian and Teather (2017) made a Fitts’ law based study to

compare selection times and accuracy of head movement, eye movement, and a

combination of both. The results show that the head movement performs the best and is

also strongly preferred by users (Qian & Teather, 2017).

The choice to use head movement was supported by a few strong arguments. Firstly,

head-tracking is technically mature and therefore robust enough to use reliably.

Secondly, it is a versatile input modality. It can be used for discreet input, by pointing

at a dwell-button, or for more continuous input with head tilt or point distances.

Finally, it was clear that we use the HoloLens based on the kind of AR we want to utilize

in this project, which already has head-tracking integrated into the device.

Even with the disadvantages of false positives, speech input was the most appropriate

addition to head-tracking. It is similarly already provided by the HoloLens, thus no

additional hardware is required. Furthermore, these two modalities work well together,

because they can easily be used simultaneously as humans do every day. The last

positive is that for input no visual clutter is generated, which keeps the users view free.

Pose Recognition

Arriving at the final setup of the pose recognition, based on initial technological

constraints, was a long-winded process. The first constraint is the 3D-mesh the HoloLens

builds of its environment. The idea was to use this mesh to forgo the need for object

recognition, just using the bumps in the mesh generated by objects that extrude from

the working area for the visual cues. Experiments showed that the created 3D-mesh is

very coarse and smooths over anything that is just a small object extruding from a larger

1https://pupil-labs.com/
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plane. Even objects of up to 15 cm were reduced to a minuscule bump in the mesh,

making it not usable for this purpose.

With actual object pose recognition needed, it became clear that the HoloLens’

infrastructure for object recognition was not sufficient for our purposes. The only large

recognition systems that are available on the HoloLens are the, in chapter 4.3.1

mentioned, Vuforia SDK which is only able to detect highly textured objects and an

incomplete port of the OpenCV 1 library. Vofuria is used in this project for basic marker

detection for the initial alignment of the coordinate systems of the HoloLens and the

Kuka iiwa robotic arm.

Because of the relatively low computational power the HoloLens has, in combination

with missing infrastructure, the decision was made to outsource the actual pose

recognition to a separate desktop machine with which the HoloLens communicates. This

leaves the HoloLens’ resources for the actual application, which is important because a

stable and high frame rate is necessary for appropriate application quality. Additionally,

the possibility to use multiple cameras is opened up, as long as their position is known in

the HoloLens coordinate system. This enables different viewpoints of the working area

than the user has, a higher resolution image than the HoloLens Webcam for better

detection and the camera can also be much closer than the user itself.

The considerations for the pose recognition network that was used as a basis of this

recognition system, are the following: firstly, one of the most important aspects is the

fact that normal assembly task objects often have almost no texture, which makes these

kinds of feature-based approaches (like Vuforia) not suitable. Secondly, in this scenario

where the working area is limited, partial occlusion among objects and from the robotic

gripper itself is common. This gets further amplified when objects are rearranged and

grasped by the gripper. As described in 4.3.2 template-based approaches handle

textureless objects well but have bigger problems with partial occlusion, leaving them

not very robust in these situations. Another aspect, which was lessened in importance by

the possibility of multiple cameras, is the detection efficiency for distances of 1.5 to 2.5

meters from the working area. As the user should be placed outside the maximum

envelope of the robotic arm for safety reasons, even with the Kuka iiwa which has the

ISO 10218-1 certificate for HRC.

With these constraints in place, we decided that using a state-of-the-art CNN-based

network would be the best approach. Based on this decision another aspect/constraint

comes into play. A neural network needs a large amount of labeled training data to learn

from, which is difficult to generate as elaborated in chapter 4.2. Because of this, the

system by Sundermeyer et al. (2018) was chosen as the basis because it fits the

constraints very well (Sundermeyer et al., 2018). It focuses on the synthetic generation

of training data, partial occlusion robustness, symmetry robustness, and can handle

textured as well as textureless objects. The basic idea of how this network works is

described in chapter 4.3.3 and in more detail in 6.6.2.

Additional considerations

1https://opencv.org/
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With knowledge of the working area, it is possible to adjust the found pose of objects, if

it is not perfectly aligned to the table surface. If an object is virtually placed inside or

slightly above the tabletop it can be adjusted and therefore alleviate small detection

errors of this kind. The same can be done for small rotational errors, where a flat surface

of the object is tilted and therefore not flat on the table, which can also be adjusted.

The system by Su et al. (2019) discussed in section 4.4.2, utilizes different update

frequencies for their separate sub-systems. The recognition runs at approximate 30 FPS

and the state estimation with only 2 FPS. This approach makes sense for this

application as well, because the HoloLens application needs to run at 60 FPS, but the

pose of the object can be tracked much less frequent for two major reasons. The first is

the fact that a once recognized object can simply be placed in the virtual environment of

the HoloLens, which itself tracks its pose in space. Once the object is placed and not

moved in the physical world, there is no need for another pose recognition as it is simply

held in place by the HoloLens’ SLAM algorithm. The second reason being that the

manipulation of the objects is well known from the applications point of view, as long as

no user error occurs. When an object is grasped it will move exactly as the robotic arm

does, and its movement is known/controlled through the application, making the object

manipulation also well defined and needing no further pose recognition in between

picking and placing the object. Only when the object is pushed by the gripper without

grasping it, falls over or something similar happens, a new pose recognition is required.

This, in theory, allows a much less frequent update rate of the pose recognition, possibly

even only on certain events.

One approach that is used by a few systems presented in the literature review, like the

one from Hettiarachchi and Wigdor (2016), is to utilize an additional depth camera to

get the missing data the HoloLens does not provide (Hettiarachchi & Wigdor, 2016).

With the integration of additional cameras to add a different viewpoint of the working

area, it makes sense to consider employing depth-cameras and use the additional

information in this application. Depth-cameras were disregarded as they introduce more

processing overhead, system complexity, and additional hardware which was not feasible

in the time-frame of this thesis. Therefore it will be further discussed in the future work

section 8.1.

The developed advanced visual cues which will be described in section 6.5 utilize the

pose recognition in different ways. The most complex one is the Object Ghost, which is

similar to the Object Shadow of Gong et al. (2019). The key difference being the three-

dimensionality of this ghost in contrast to the 2D version Gong et al. (2019) use. The

advantages of this method will be highlighted in the aforementioned section 6.5. Gong et

al. (2019) additionally use an object aware place which is implemented in this application

as well. Details of which are illustrated in section 6.4 (Gong et al., 2019).
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Figure 20: Overview of the developed application. The blue outlined area is external from
this thesis, by Franziska Rücker. The lighter shaded rectangles describe the hardware
devices, while the darker ones are logical components. The arrows indicate communication
between components (continuous line) or devices (dashed line).

6 The application prototype

The application developed for this theses will be described in the following sections. Start-

ing with a general system overview with a precise description of what the different system

components are, how they interplay, communicate, and what data is passed between them.

For clarification of what the user is doing, while using the application, the workflow will

be run through. Subsequently, the general interaction types and control concepts for the

robotic arm with the added benefit of object pose information will be described. Follow-

ing a depiction of the advanced visual cues and lastly all components of the object pose

recognition system.

The implementation for the HoloLens application was done in Unity 1 in combination with

the HoloToolkit 2, a plugin for Unity. C# is the used programming language for this part.

Python is the programming language used for the pose recognition system, which runs on

Ubuntu 3 16.

6.1 System Overview

The complete system consists of three separate devices, visualized in figure 20 with the

lighter shades of each color yellow, green, and orange. The orange is the control cabinet

of the Kuka iiwa, which is responsible for the robotic arm. This includes its safety

1https://unity.com/
2https://github.com/Microsoft/MixedRealityToolkit-Unity/
3https://ubuntu.com/
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settings and general controls. For our prototype, a small application is running on this

cabinet to communicate with the HoloLens via an User Datagram Protocol (UDP)

interface. It can process incoming movement, rotation, and gripper state changes

through a simple protocol and sends back information on gripper positions, state, and

completed movements. As visible in the figure, this communication is part of Franziska

Rücker’s thesis and will be described in detail there.

The HoloLens application consists of six logical main components, of which three are

part of Franziska Rücker’s thesis as well. The Communication component is the interface

to the Kuka iiwa but is additionally responsible for the conversion of spatial data

between the two coordinate systems of the hardware devices. The Kuka iiwa’s and

HoloLens’ coordinate systems have different handedness and are not aligned in space.

Robot control is for the basic environment-unaware control of the robot, like gripper

rotation and precise movements. As the figure suggests, this component was created in

cooperation with Franziska Rücker, with no clear boundaries. As the general movement

is also important for the understanding of this thesis, the functionality of the individual

control commands will be described in section 6.4. The last component, that is external

to this project are the visual cues. These are virtual helpers that work completely

without object detection, only through use of the spatiality of the holograms.

The Object Tracker component is handling everything needed for the pose recognition on

the HoloLens application side. It captures a webcam image, sends the raw image data

across the local network to the desktop machine via a Transmission Control Protocol

(TCP) connection and processes via UDP incoming pose data from the desktop machine.

Two different protocols are used to reduce the communication overhead as much as pos-

sible. TCP is able to stream a large amount of data, which is needed for the raw webcam

image. Whereas it is much simpler to send small data packets via UDP which can only send

a maximum of 65.535 bytes - 20 bytes (Size of the IP header) = 65.515 bytes (including

8 bytes UDP header), but is very lightweight. Additionally, the Object Tracker processes

the pose data and places the corresponding object inside the virtual environment of the

HoloLens. With redundancy checks and small pose corrections. This is further explained

in section 6.6.

Advanced Control is the component responsible for all movement of the robotic arm, which

is environment-aware. This mainly includes picking and placing and is also discussed in

section 6.4 together with the other movement scheme.

The final component on the HoloLens side are the Advanced Visual Cues. They use the

object pose data to create virtual helpers that are environment-aware and are therefore

able to support the user drastically with manipulation of an object. These cues are Occlu-

sion Cue, Gripper Region Indicator, Laser Pointer, Virtual Extension and Ghost Object.

They are described in detail in section 6.5.

On the desktop machine are two components and a directly attached webcam. The 2D

Object Detector waits for incoming image data, regardless of which webcam they origi-

nate from (HoloLens or directly attached), and processes the data by detecting all known

objects and making rectangular crops of them with corresponding labels. These crops are

then given to the 6D Pose Recognizer, which uses these crops to infer an object pose in
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Figure 21: Intended workflow for the prototype application. The rectangles represent user
interaction and can be repeated as often as necessary, while the diamond shape express
independent system actions. The green rectangles define the main path of the application
which cannot be skipped. The yellow ones are optional. The blue rectangles can be
activated at any time in the big light blue rectangle.

camera space. This data is then sent to the HoloLens as a bundle, where all recognized

object data is concatenated. The data consists of a 4x4 transformation matrix containing

the object rotation and position. The details for this are explained in section 6.6.

6.2 Workflow

Multiple hardware devices and different subsystems like the robot control, visual cues,

and the pose recognition system give this system a certain complexity. To show that the

user’s actual interaction-loop is straight forward, figure 21 gives an example of the

application interaction workflow. Right after the application is started the user needs to

scan the marker to set up the virtual environment, after which they are in the main loop

of the application. The path of the green rectangles represents the minimum interactions

for moving objects around the workspace. Each time one of them is triggered, the pose

recognition system rescans the area, indicated by the dotted lines and the violet diamond

shape. During the green main loop, the user can intersperse the rotation and precise

movement for alignment at any time. The switch ghost mode action toggles the helper

for placing a picked object and therefore only makes sense after the user picked

something, and then moved the arm again, before activating it. In any situation after

the marker was scanned the restart or the detection command can be issued if something

unexpected happens.

6.3 Interaction types

The two input modalities that are used in this prototype are speech and head gaze, as

mentioned before. The specific interactions for each one will be described in this section.

The speech input is very basic, in that it uses only single-word commands that the user
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can issue.

Following is a list of all commands:

• Pick: Lowers gripper, closes it and goes back up

• Place: Lowers gripper, opens it and goes back up

• Open: Opens the gripper

• Close: Closes the gripper

• Turn: Rotates gripper to cardinal direction

• Move: Moves the gripper to the gaze location

• Cancel: Cancels precision movement mode

• Occlusion: Virtually overlays all currently recognized objects with their 3D model

• Detect: Updates object poses

• Restart: Resets the gripper to its default starting position

These commands will be described in more detail in the following sections.

The head gaze has two different interaction types. The first one is its use as a normal

cursor for pointing, like a computer mouse. This interaction happens for dwell buttons,

which are displayed in figure 22 a). When the gaze cursor is above one of these buttons,

the small white pin at the top of the button spins around the circle once. When it reaches

the end, the button is activated. This dwell time guards against accidental activation.

The second interaction type uses the cursor head gaze at its foundation as well. But here

only the distance and direction from a certain position is important, not its exact position.

This interaction is used for the Precision Mode, which will be described in detail in the

following section as well.

6.4 Robot control

As previously mentioned, the input methods to control the robot consist of simple voice

commands and head movement. The control can be split into three different groups, the

movement, the rotation, and lastly the object interaction (namely pick and place).

Movement

Broad movement is done by pointing at a specific location with the head gaze pointer of

the HoloLens and then issuing the command Move. This triggers the robotic arm to

move to the pointed location, remaining in its horizontal movement plane. If it was

previously not at the correct height it first moves upwards to reach it. This enables the

user to easily move the robot across the working area without needing to consider its

prior height and with a single uncomplicated input. The disadvantage of this movement

is its imprecision caused by the use of pointing. When the user is not holding the head

steady or is not looking at the exact spot, the gripper may not be aligned perfectly.

For exactly these fine-grained movements is the second control scheme. The Precision
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Figure 22: Robot control. a) shows the rotation and precision dwell buttons. b) is the
precision mode visualization (blue underground only for visibility).

Mode can be activated by gazing at a dwell button that follows the robot gripper or with

the speech command Slow. Once it is activated the robot gripper starts continuously

moving towards the pointing location of the user in a straight line. This movement is

limited to only one axis direction in the z-plane of the grippers’ local coordinate system.

It accelerates when the distance between the gripper and gaze pointer is larger and

decelerates the closer they are together, stopping when the pointer reaches the circle in

the center. To indicate this, an arrow is visualized reaching from the circle to the gaze

pointer and stretching accordingly. Figure 22 b) shows these visualizations. This allows

for very precise alignment of the gripper. The deactivation is done by either dwelling

into the circle in the center for a short time, or if it is occluded by an object by issuing

the voice command Cancel.

Rotation

As discussed in section 5 the rotation in this prototype is limited to one axis. It has a

broad and precise manipulation type similar to the movement. The broad rotation is

issued via a speech command, namely, Turn, that rotates the gripper from its current

rotation to the nearest cardinal direction. For example, if it is at 78◦ it would rotate to

90◦ and if it was at 24◦ it would rotate to 0◦. If it already was at one of the cardinal

direction points, it automatically rotates to the other. Because the gripper is symmetric,

it is not too important which direction it rotates towards.

The precise rotation is done through two additional dwell buttons, one for each

direction, which follow the gripper. Different from the precise movement this is not a

mode to activate and deactivate. Instead, when the dwell button is activated the gripper

rotates in the corresponding direction in a 10◦ step. 10◦ seemed fine-grained enough to

fit our purpose, but could easily be tuned.
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Figure 23: Example of different automatic grab heights based on the grippers relation to
the object.

Object Interaction

The very basic interaction is opening and closing the gripper to grasp or release an object.

The speech commands Open and Close enable these. The higher-level commands Pick and

Place are leveraging the object pose recognition to simplify the picking and placing process.

First, the gripper needs to be positioned over the object that the user wants to pick. Once

the Pick command is issued the robotic arm lowers itself until it is in grasping reach of

the object, closes the gripper, and moves back up to its initial position. The stopping

height is calculated based on the table height and the scale of the detected object below

the gripper. The object complexity, as long as it is correctly detected, is irrelevant because

the picking height is dependent on where the gripper is positioned above the object. This

is programmatically precise enough to differentiate between the different heights of the

object below the gripper and lower it appropriately. An example is shown in figure 23,

where based on the gripper position above the object, it lowers to the lower protrusion

of the L-Shape or stays at the higher part. The robustness is entirely dependent on the

precision of the pose recognition.

The advanced Placing also takes the recognized objects into account. With knowledge of

the object held by the gripper and on the table, it calculates and moves the distance the

robotic arm needs to lower the gripper, then opens it, and, similar to picking, moves back

to its starting position. This enables the stacking of objects on top of each other without

too much exhausting precise manual lowering of the gripper. If no object is detected below

the gripper, the height for picking and placing is the table height.

This height aware pick tries to ride a fine line of supporting the user but not replacing

their tasks by too much automation. One aspect of this is, that the pick only makes

vertical movements itself and leaving the horizontal movement and gripper rotation to the

user. This is additionally done because oftentimes it is necessary for the user to grasp

an object at a specific point in a certain rotation, which a fully automatic pick could not

predict. This higher-level strategizing is part of why a human as an operator is useful in
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Figure 24: Example of how the occlusion cue enables correctly looking occlusion of virtual
element and the real world.

the first place. Height aware placing mirrors these decisions. A more in-depth discussion

on why certain design decisions for the part of this control scheme that is not utilizing

object recognition where made, can be found in Franziska Rückers thesis.

6.5 Advanced Visual Cues

These visual cues are called advanced because they utilize the object recognition system

for more environmental information. With this information, they can create better depth

information and react to possible collisions to support the user, in contrast to the ones

not using object pose recognition.

Occlusion Cue

The fundamental and probably most important visual cue is the Occlusion Cue, which is

enabled by pose detection. When an object is recognized its virtual model will be placed

on top of the real one. This virtual model is shaded to be invisible and not occlude the

real world, but simultaneously occlude everything virtual that is behind it. Figure 24

demonstrates the difference between having this occlusion and not having it. Only

through the occlusion cue, most other cues are actually usable, because they can be

properly perceived by the user. Especially for depth perception, these are crucial

information to have as humans use occlusion to recognize relations of objects and

distances between them.

Gripper Region Indicator

The Gripper Region Indicator has the purpose of giving the user a clear notion wherein

the horizontal plane the gripper is positioned at any moment even when it is high above

the table. To be effective, the Gripper Region Indicator is displayed on top of the table

and makes use of the Occlusion Cue to clearly show when the gripper is hovering over an

object, as demonstrated in figure 24. Secondly, the Gripper Region Indicator resizes

according to the current gripper span (distance between the fingers). When the gripper

is half-closed, the Indicator matches its size. Giving the user a clear understanding of its

span and if an object is pickable at the current moment or not. Figure 25 a) and c) show

how it works in action.
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Figure 25: Advanced Visual Cues for picking. a) shows the working occlusion of the gripper
region and laser pointer coming down the gripper center. b) gives a demonstration of a
collision, which is highlighted by the red Virtual Extension of the gripper finger and c)
shows the picked object with the change of the Gripper Region Indicator.

Laser Pointer

Another cue for aligning the gripper is the Laser Pointer which marks its center. It

travels vertically down to meet the Gripper Region Indicator on the table and is visible

in figure 25. Its purpose is to quickly see the gripper alignment to the left and right side,

even when the Gripper Region Indicator is blocked from vision. Additionally, it adds a

third dimension, giving the user information for higher or non-uniform objects. Similar

to the Gripper Region Indicator, the Laser Pointer is taking advantage of the Occlusion

Cue and stops on the objects surface.

Virtual Extensions

The last cue which is primarily for picking objects are the Virtual Extensions. These are

an additional help to minimize wrong alignment of the gripper and reduce accidental

object-collision. They are extensions of the gripper fingers and, similarly to the Laser

Pointer, go down vertically to the tabletop. They normally are invisible to keep the

visual clutter low and only show themselves when they collide with an object. This

collision happens as soon as the gripper is above an object, reducing the potential of

unnoticed misalignment. This is exemplified again in figure 25 b), where the Virtual

Extension collides with the object and is displayed as a slightly transparent red

rectangle. Red was used as a signal color that the users attention is required, in contrast

to the white of the other cues. The difference to the other two alignment helper, this one

gives active visual feedback instead of being passive like the Gripper Region Indicator

and the Laser Pointer. The reason the other two are still important is, that they work on

bigger/complex objects. These may not fit entirely into the gripper region, therefore

needing to be grasped at small outcroppings when the Virtual Extensions may still be
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Figure 26: Advanced visual cues: the ghost object. a) shows the object ghost in the Gaze-
Follow pattern and b) in the Gripper-Follow pattern. c) demonstrates, that the ghost
adjusts its height. c) shows the gripper ghost caused by proximity to a different object.

triggered. Secondly, when the pose recognition system fails, they still work with some

limitations. They would then occlude the object, but still give some information about

object-gripper relations.

Object Ghost

For placing, there is only one advanced visual cue, the Object Ghost, which is the most

complex one. As can be seen in figure 26 a), it is a copy of the currently grasped object.

This copy slides along the table adjusting its height when above another object, following

the users’ gaze, as visible in figure 26 c). It only moves inside the working area of the

robot, stopping at the exact location where the border is, which the robot itself will not

pass. This allows the user to know exactly where the object will end up when they move

the robotic arm. The user can align the Object Ghost and say the move command with

knowledge about the placing position of the object.

In addition to this Gaze-Follow pattern, which was just described, the Object Ghost has

a second behavior pattern. The Gripper-Follow pattern can be manually activated and

deactivated through the Seeing Eye dwell button that only appears when an object is

grasped. It also switches into this pattern when the robotic arm is in precision mode.

While in this pattern, the ghost is projected exactly under the real object, following the

grippers’ slow movement and giving the user an opportunity for very precise alignment.

This is shown in figure 26 b).

The last important feature of the Object Ghost is the normally invisible Gripper Ghost,

shown in figure 26 d) in red. This Gripper Ghost is attached to the Object Ghost and

moves around with it. Just like the Virtual Extensions it only shows itself when it collides

with another object. Allowing the user to know exactly if they can place the object without

hitting a nearby one with the gripper itself during placement.

All these advanced visual cues were designed with the intention of supporting the users
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without overloading them with information. This was achieved by reducing visual clutter

as much as possible, which is especially important on the HoloLens as the FOV is very

small. Only displaying elements when they are important and sticking to transparent

visualizations.

6.6 Object and pose detection

At the core of this prototype lies the object pose recognition. Without it, the described

robotic control scheme and the advanced visual cues will not work. With the consider-

ations in section 5 the recognition system has two cameras with different viewpoints of

the working area. The webcam integrated into the HoloLens and an additional webcam

placed on the right side of the table, facing the working area from an elevation of 20 cm

above the tabletop. Only on key events an image from each webcam is send to the pose

recognition system to update the objects in the scene.

The events in which a new pose update is done are listed here:

On...

• ...system startup

• ...restart finished

• ...robot move finished

• ...gripper opened

• ...gripper closed

• ...Detection command issued

These few events, excluding the Detection command, cover most of the situations in

which an object might be moved without the application having information about it.

The speech command is there as a fail-safe for the user if something went wrong in other

situations.

As outlined in the system overview, the pose recognition is compartmentalized into two

steps, the 2D object detection, and the 6D pose recognition. These will be described in

the following two subsections.

For a user-study which was performed and will be discussed further in section 7.2 a fake

object pose recognition was utilized. As the workspace is fixed during the study the

object pose was well-known and could be hardcoded into the system. When an object

is normally moved with the gripper, these changes are known as well, as the gripper

position itself is specified by the application. If no errors occur on the operators’ side, like

pushing or dropping objects, the system functions as if it had working pose recognition

for the purpose of the study. This was done for two reasons. First, because the study was

interested in other criteria than the accuracy of the object recognition and therefore it was

not important to use it. It was more important to be consistent for the user. Secondly,

the pose recognition system had trouble with the used objects and was therefore not at

an usable point. This will also be further discussed in section 7.2.
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The following, the three components of the pose recognition system will be described in

the order of operation in the application.

6.6.1 Object detection network

The first stage of the full pose recognition system is the 2D object bounding box

detection network (object detection network). The Keras-Retina network was chosen

based on a recommendation by Sundermeyer et al. (2018), because it outperforms most

other established object detection networks and its single stage nature gives it

considerable speed as well (T.-Y. Lin, Goyal, Girshick, He, & Dollár, 2017). The

implementation that is used in this thesis is by Gaiser et al. (2019) and is available on

Github 1 (Gaiser et al., 2019). The novelty of T.-Y. Lin et al. (2017)’s object detection is

the loss function called focal loss. It focuses on the imbalance in training data in regards

to many easy, negative examples in contrast to few hard, positive examples. A big

problem with one-shot (single-stage) object detectors is this imbalance which leads to an

overemphasis on easy cases and the rare hard cases are not appropriately trained. Focal

loss solves this problem by dynamically scaling the impact of correct detections during

training based on the given confidence of the detector. The higher the confidence of class

detections the less impact it has on training. This leads to an emphasis on harder

examples and a reduction of the impact of easy examples.

Data for training the network is generated synthetically to drastically reduce the

turnaround time for testing different objects. As the basis for data generation serves the

script by Sundermeyer et al. (2018). This basic generation script takes a random

background from a list of open access images and renders a random amount of training

objects onto this background in a random transformation (position, rotation). For each

new image an XML file with the information of all object locations, their classes, and

bounding boxes is generated.

Augmentation of this synthetic data generation was done to align it more with our

use-case. As we used the same object multiple times with different colors it was

necessary to add an object color randomization to the data generation. Additionally,

because of the different cameras and corresponding different distances to the working

area the variation in distance offset to the camera was heightened. For each newly

generated image, a different random base distance is chosen which gets added to all

rendered objects after their normal random transformations are applied. This gives the

effect of the virtual camera standing at different distances. The final augmentation is the

enabled possibility of object overlap. In the basic synthetic data generation, no objects

could overlap and occlude each other, which drastically reduces the performance of the

object detection even for slight overlaps. Because the generated XML file is not the

correct format for training the Keras-Retina network, a small conversion software that

parses all generated XML files and has a Comma-Separated Values (CSV) file with all

needed information as the output was developed.

Pre-trained weights were used for training the network, which helps to overcome the

domain gap of synthetically generated data as elucidated by Hinterstoisser et al. (2018)

(Hinterstoisser et al., 2018). It additionally speeds up the training itself. The used

1https://github.com
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Figure 27: Result of object detection with the bounding boxes, classes, and confidences
drawn on the input image.

Figure 28: AAE CNN architecture (Sundermeyer, Marton, Durner, Brucker, & Triebel,
2018).

pre-trained weights came from the COCO 1 dataset and the feature extraction is done

with the ResNet-50 2 architecture. The training time amounts to approximately 42

hours on an Nvidia Tesla K40 graphics card.

An exemplary result of the network testing on a webcam image is given in figure 27. The

red boxes are the individual detected bounding boxes of each object, the word under it is

the class of the detected object and the value is the confidence of the detection in

percent [0,1]. These values in the form of three separate arrays get fed into the pose

detection network subsequently for each detected object.

6.6.2 Pose detection network

As previously mentioned the AAE network is adopted from Sundermeyer et al. (2018).

Following, the network will be described in more detail.

The architecture of the AAEs CNN is shown in figure 28. For training the network, a

pixel-wise Least square (L2) error loss function is utilized. It is only computed on the

1http://cocodataset.org/
2https://www.kaggle.com/keras/resnet50/home
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pixels with the largest errors in order to reconstruct finer details and not converge in

local minima during training. For the training 20000 synthetic images are generated that

are placed in a random 3D orientation facing towards the camera with a constant

distance. Except for the scene lighting, all other domain randomizations are added

during training. The training batch size is 64 and it performs 30000 iterations, with the

Adam optimizer, amounting to a training time of approximately 2.5 hours on an Nvidia

Tesla K40 for a single object.

After the training stage is finished a so-called codebook is created. Images of the object

are generated from each point of a full view-sphere, which is a highly refined icosahedron

with the object at its center. It is shown in the offline stage of figure 29. For each point

of this view-sphere, the camera is rotated in-plane to cover the whole rotation space of

the object. In total there are 2562 equidistant viewpoints times 36 in-plane rotations

equaling 92232 created images. All of them are encoded with the trained network

resulting in a code-point for each, that is subsequently inserted into the codebook

together with its rotation matrix. This codebook serves as a lookup reference in the

online test phase.

Figure 29 additionally shows the online phase (testing). The given image is first run

through the Object detector, which crops the objects to their bounding box. This crop is

then encoded with the trained AAE and then compared with each codebook entry, using

the Cosine Similarity. This similarity can be computed efficiently on a graphics card.

The entry with the highest similarity to the input image is then selected and the

corresponding rotation matrix is the resulting orientation that the network predicts.

Finally, the translation is predicted with the following two equations:

tpred,z = tsyn,z ∗
lsyn,max cos

ltest
∗ ftest
fsyn

(1)

(
tpred,x

tpred,y

)
=
tpred,z
ftest

(
(bbcent,test,x − ptest,x) − (bbcent,syn,x − psyn,x)

(bbcent,test,y − ptest,y) − (bbcent,syn,y − psyn,y)

)
(2)

Equation (1) predicts the objects distance tpred,z to the given pinhole camera model. All

variables containing the subscript syn are the known synthetic parameters either from

the synthetic camera or the codebook entry which was matched in the orientation

prediction step. Therefore, tsyn,z is the distance to the synthetic camera. ltest and

lsyn,max cos are the diagonals of the bounding boxes of the objects. The first being of the

detected object and the second being from the matched codebook entry. Finally, ftest

and fsyn are the focal lengths of the real and synthetic camera sensors. The second

equation (2) calculates the two missing dimensions, x and y, of the translation vector

tpred. Here ptest and psyn are the principal points of both camera parameters and

bbcent,test/bbcent,syn are the centers of their corresponding bounding boxes.

For additional clarification, the system described in this subsection was created by
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Figure 29: Upper half is the codebook creation, which is done offline after training the
AAE network. Lower half is the online testing of an image (Sundermeyer, Marton, Durner,
Brucker, & Triebel, 2018).

Sundermeyer et al. (2018) and only slightly adjusted for the purpose of this thesis,

namely the synthetic image generation. For additional robustness against similar objects

overlapping each other’s bounding boxes in a given test scene, the domain randomization

was augmented with additional objects rendered onto the background. It is often the

case in assembly tasks that multiple instances of the same object are present and lying

close to each other in the working area. This addition is used to explicitly guard against

errors that occurred during the Cosine Similarity selection step.

6.6.3 Pose result processing

After the 6D pose data for all objects in the current webcam images are generated, they

are sent to the Object Tracker component in the HoloLens application, where they are

converted into virtual objects in the scene. This occurs in five main steps, the message

parsing, coordinate system transform, the object selection, the pose adjustment and

finally the de-duplication.

The message parsing uses the message to generate a translation vector and rotational

quaternion for each object, still in the original camera space of the webcam.

Additionally, it saves the given object class and which webcam it came from.

Coordinate system transform is then converting the generated transformation data into

the corresponding camera space. This includes a scale adjustment of the translation

because of different coordinate system units in the pose recognition system (centimeter

vs meter).

Thirdly, based on the distance of the objects to the table surface the object selection

selects which size the object has. Two different sizes were used for all objects, of which

the pose recognition system only knows the smaller dimensions. Meaning that it always

assumes it to be the smaller object and the given distance to the camera is therefore not

correct if the found object is the bigger of the two, as it thinks that it is closer to the

camera than it actually is. This depth-size ambiguity was described in section 4.2. To

find out if the object is the correct one the distance to the table surface along the camera
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forward ray is taken and if it is larger than a small threshold (4 cm) then the bigger size

is used.

For pose alignment, the same distance information as for the object selection is used and

the object is translated along the camera forward ray to place it perfectly on the table.

For rotation, the object axis with the highest Cosine Similarity to the tables up-axis is

found and then the object is rotated to perfectly align the found axis with the table axis.

Finally, the objects get de-duplicated. As there are two cameras, all objects from each

camera are still present, even if both cameras detected the same object. To eliminate

this duplication, first every object from one camera is intersection checked with all

objects from the second one. The closest objects that overlap and are the same class and

size, will then be merged into one. This merging takes the most robust values from the

translation of each object. The distance to the camera has often small errors, as it is

inferred in the conversion process of the 2D image into 3D space. Therefore this value is

not used in the merging process, making the pose recognition slightly more robust. For

the other two axes, the mean of each between both cameras is calculated.

After these five steps, all detected objects are placed in the virtual scene. They can be

utilized for collision detection and further transformed based on user interaction until new

pose data arrives at the Object Tracker component.
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7 Evaluation

This thesis consists of two main parts, the pose recognition system and the design of

the advanced visual cues. In order to properly verify if both parts function as intended

they were tested in two separate small studies. The reasons for splitting them into two

studies instead of having one bigger study are manifold. First is the dependence of the

advanced visual cues on the pose recognition. If the pose prediction is too imprecise the

study participants cannot effectively use the cues and it would be impossible to get any

conclusive information if they function as intended. Additionally, the design verification

study for the cues was part of a bigger study conducted for the MIA project (described in

section 1.1), which needed to take place at a specific time, and the pose system seemed not

reliable enough at that point. The in 6.6 mentioned fake pose recognition was therefore

implemented to have a predictable and precise outcome for each participant. Lastly, the

approach for testing both parts are vastly different. For the advanced visual cues, it is

important to test the design choices with different potential users of the system to get an

impression if they work as intended. Pose recognition works independently of the user and

can be tested best in a technical evaluation. Here the prediction accuracy and stability

are important to know, which cannot properly be measured in a user study.

The decoupling of these two parts has the disadvantage of failing to state how well the

overall system works. This was not seen as a huge drawback, because it is straightforward

to predict the possible performance of the whole system based on the results of the two

smaller studies, as the two evaluated parts are cleanly separated.

7.1 Design verification

The goal of the small user study was to discover if the designed advanced visual cues,

together with the movement scheme, are used as intended and are understandable after a

short introduction. Additionally, a task was chosen which consists of multiple sub-tasks

that escalate in difficulty in order to identify if and how the system supports the user in

especially hard situations. For verification of these questions, information on precision,

time, and the success rate for each sub-task was recorded. On top of that, a small interview

was conducted at the end of the task to get subjective information from the participants.

In total seven participants between the age of 19 to 55 took part in the study. Five of

them already worked with or programmed a robotic arm before, six experienced AR/VR

at least once before and two had already programmed something for AR/VR. Initially,

the goal was to have twelve participants in the study, which was not achievable because

the COVID-19 pandemic cut the study short after the first week, as it would have been

irresponsible to proceed with the study and risk infecting the participants.

7.1.1 Setup and procedure

In total, the duration of the study is one hour for each participant, consisting of four

distinct parts. The first part was the introduction to the robotic arm, the complete system

itself and all required commands to control the robot. This takes around 10 to 15 minutes.

The second part is the training phase, in which the participant puts on the HoloLens and

performs a small training task to get familiar with the system. The training task consists
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Figure 30: Study task setup of objects starting and marked end locations. The sequence
the participant moves the objects in is a) to 1), then b) to 2) and finally c) to 3).

Figure 31: Study setup after completion of the task.

of picking and placing an object at different locations. This part takes approximately 5

to 15 minutes.

The third and main part is the main task, which was repeated two additional times and

takes up to 30 minutes of the study. The setup of the chosen task is shown in figure 30

and the state at the end of the task is presented in figure 31. For each figure, the upper

image is taken from the perspective of the participant, and the lower one from the side to

give a proper overview. Picking and placing the lime green objects, a), b) and c), are the

three sub-tasks. The first step is picking up object a) and placing it at location 1), then

object b) to location 2) and lastly object c) to location 3). Object a) is straightforward

and the only difficulty is not hitting the big pink object next to it while picking. Picking

is slightly more complicated for object b), as it is close to multiple other objects, which

occlude it partially. Placing object b) is harder as well, because the participant has to

place it behind a), which is already at location 1) and therefore blocking the view. Hardest

is the third object, c), which is smaller than the first two, elevated and very close to the
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Figure 32: a) are the mean success rates and standard deviation for each sub-task and the
total. b) shows the mean task time and standard deviation for each trial of the full task
and the total across all trials.

red objects. Placing this object is very difficult, as the view is not only blocked by the

closer red object at location 3), it additionally cannot be placed too far back as it would

hit the further red object. During the whole task, the participants are not allowed to tilt

their head or body to the side to get a better view of the scene. This was done because

the original target group of this system are physically impaired people who would not be

able to tilt their head or body for a better view.

The final part of the study was the data collection, namely some questionnaires and the

short interview. The questionnaires were mostly for the aforementioned overarching study.

This part takes up to 10 minutes in total.

7.1.2 Results and analysis

In general, the study shows that the designed system works as intended. The overall

success rate of every participant across all three trials is at Mean (M) = 87.3% (Standard

Deviation (SD) = 5.3%). A sub-task was considered successfully completed if the object

was picked and placed in close vicinity of the goal position, without it falling over. The

participants had the chance to recover small, non-fatal errors. Splitting the success rates

into the three sub-tasks gives a clear indication of the final sub-tasks’ difficulty. Figure 32

a) shows that first and second sub-task have a success rate of M = 97.62% (SD = 6.3%)

and M = 92.86% (SD = 8.9%) respectively and the third one M = 71.43% (SD = 12.6%).

The reason for the comparatively high failure rate of this sub-task may be the fact that

a recovery is often not possible. When the object is misplaced it will fall over which is

unrecoverable in this scenario. For the first two tasks, a misplaced object would most

likely just be standing on the table and could be picked up again to rectify the placement,

which is impeded in the third one due to the slight elevation.

The time to complete the full task averaged at M = 273 seconds (SD = 81 s) across all

trials, and for the individual trials it took M = 327 s (SD = 66 s), M = 249 s (SD = 107 s)

and M = 243 s (SD = 72 s) respectively, as visible in figure 32 b). Of interest here is the
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Figure 33: Mean adjustment time for picking and placing an object for each sub-task and
the complete task. This is the time from the move command to the pick/place command.

difference of the first trial in respect to the latter two, as it is much higher. This may be

a result of a learning process that was not alleviated by the training task. It makes sense

that it takes longer to do such a specific task the first time because an approach needs to

be developed which can be repeated in the following trials.

Time for specific sub-tasks was taken from the first move command to the pick/place

command. This represents the fine-adjustment time when the robotic gripper is close to

the goal location. Figure 33 depicts the mean times for pick and place for each sub-task

and the mean across all sub-tasks. It is visible that there are minimal differences in these

times, which is interesting because of the fact that the sub-tasks get progressively harder.

This could be caused by the earlier mentioned success rates specifically of the third sub-

task. The fact that readjustment was mostly not possible after making a placing error,

the first two sub-tasks accumulated more time when users adjusted the positions when

misplacing the object. This is also visible in the huge SD, that it was either done quickly

(no readjustment) or took a long time. In the third sub-task, this time was spend on

the more difficult alignment, equaling out the times. Additionally, the fact that this

adjustment time does not include the whole sub-task, but only the fine-adjustment time

after moving, may introduce more noise. A different hypothesis is that the system works

in a way that the fine-adjustment time is independent of the task difficulty. The Object

Ghost makes it very clear where the gripper is positioned regardless of the task. You

can clearly see when the position is correct and the fine-adjustment time is therefore only

dependent on how close the initial move command brought the gripper to the goal position.

Finally, it is also interesting to look at the precision of the participants. Figure 34 depicts

the pick and place precision in millimeters. All sub-tasks are in a range of less than four

mm for their mean precision and are in total at about 1 cm offset to the perfect position.

Considering the task difficulty these results are very reasonable, but may not be enough

for the assembly of a workpiece or something similar. Especially the first sub-task is pretty
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Figure 34: Mean offset to perfect picking and placing position in millimeter.

easy but regardless of that has the same precision, which was expected as the view of the

placing area was unobstructed. Reasons for this may be the collected data, as error of

the picking accumulates on the placing. Therefore, when the object is picked with an

offset, barely being in the gripper, the user accommodates this offset when placing, but

the system sees this accommodation as an additional offset.

In the short interview, the participants were asked what the most important helper for

pick and place was. Five out of seven participants said that the Gripper Region

Indicator was the most helpful. This fits the expectations as this cue gives the most

information on which the Laser Pointer and Virtual Extension only expand. For placing

the results are similar, here the Object Ghost was named five out of seven times as well.

The Object Ghost is definitely the most versatile cue and the main helper for placing.

On the question, if something about the prototype confused them, the limited rotation

came up twice. This was a deliberate decision to limit the scope of the project, but the

study further underlines that this is an important requirement for usage in the real world

and actual assembly tasks.

For the Object Ghost, it was implied by two users that the opacity of the ghost is too

high, therefore making it difficult to use in some situations. Other confusions were only

based on insufficient explanation at the beginning. The last question asked what

strategy the participants applied to fulfill the tasks. This was already visible during the

study itself, nonetheless interesting to see if the subjective view of the strategy differs.

The answers emphasized the fact, that all participants employed the same strategy,

which consisted of first rotating the gripper, then moving to the object, and after that

using the fine-adjustment and pick or place. The asked questions and the shortened

answers of the participants are in the appendix tables 4 and 5 respectively.
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Figure 35: Overview of the test setup. a) is the working area with the three used positions
(yellow) and the in-plane rotations. The purple triangle indicates the camera angle. b)
is a visualization of the local coordinate planes, which are defined by the corresponding
axis. c) is the object lying on all three planes, with marked in-plane rotation.

7.2 Recognition system accuracy and stability test

High accuracy and stability of the pose recognition system are extremely important for

this prototype. If the information given to the user is not correct, they may quickly

stop trusting the system, and with good cause. Therefore, two different variables were

tested: occlusion and pose (position, orientation). Namely, the accuracy and stability

of position and orientation predictions and the stability against occlusion. These tests

were performed with one example object shown in figure 35 c). Especially the rotational

prediction quality of the recognition system can vary between objects and would need to

be considered for every new object added to the prototypes repertoire. For a broader

coverage of the system’s performance, many different objects would need to be tested and

the results generalized across all of them. This was not feasible in the time-frame of this

thesis, as training and testing of every object takes a long time. Instead, it was opted to

settle for a sample of the already trained testing object, which has an average prediction

difficulty. The object has only a small amount of textural features, is symmetrical around

multiple axes, and therefore prone to self-occlusion which adds to the difficulty. The 3D

bounding box of the object is 12 cm ∗ 8 cm ∗ 4 cm.

Different procedures were required to evaluate occlusion and pose, because of this they

will be split in two sections.

7.2.1 Pose test setup

The procedure for testing the accuracy and stability of position and orientation was done

as follows. The working area of the robotic arm defines the maximum extends of where

the recognition still needs to perform consistently. Three different positions were tested

in this area, the center of the working area, the lower right corner and the upper left
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Figure 36: Mean prediction distance to ground truth in mm.

corner (from the camera’s point of view), which gives an appropriate coverage. Figure 35

a) depicts the working area as the blue rectangle outline on the table and the points are

visualized by the three yellow dots. For each point, the object was placed in all three of its

local coordinate planes, which are defined by the local axes that stand perpendicularly on

them as depicted in figure 35 b). The planes are colored the same as their defining normal

axis, for instance, the green y-axis defines the green y-plane, etc. The circularly extruding

lines in 35 a) and c) define the in-plane rotations that were performed for each of the

three object axes planes. Each line increases the angle by 45◦, to get adequate coverage

of the whole rotational space. All eight in-plane rotations were done for all object axis.

For each of the planes, no out-of-plane rotation was done, as the object can only lie on its

perpendiculars and is symmetric along most axes. Figure 35 c) shows the three rotations

for which the in-plane rotations were done. In theory, for (x) and (z) the object could

be rotated 180◦ along the axis that lies on the red line. This would produce two novel

perspectives on the object, but both were omitted for simplicity. Both are not viable in

practice as the objects would tip over without scaffolding.

This amounts to 8 in-plane rotations * 3 object axis/planes * 3 object positions = 72

unique object poses. In order to measure the stability of each individual pose, 20 frames

were evaluated respectively. The position and orientation predicted for each frame was

saved in a text file for further analysis. As ground truth, or perfect pose, the setup was

recreated in Unity and with a small script, these ground truth values were generated for

each of the 72 poses and written into a text file as well. The position was saved as a 3D

vector and the rotation as a quaternion.

7.2.2 Pose result analysis

To analyze the pose accuracy, a similarity comparison of the predicted and perfect values

is required. The stability of each pose is implied by the Standard Deviation (SD) across

the 20 frames. For this analysis a small C++ application was developed which reads both
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Figure 37: Stability measure of the position prediction. Measured as the SD of each pose
over 20 predicted positions.

text files with prediction and ground truth values and outputs the similarity and SD for

position and orientation. These results could then be further analyzed.

For position, the similarity measure was done in two different ways. Firstly the vector

distance of the predicted value to ground truth and secondly the distance along each axis.

Looking at each axis separately makes sense because especially the z-axis may differ dras-

tically from the other two, as it is the depth value predicted from a 2D image. After initial

analysis, the absolute value was used for the axial differences, as there was no visible pat-

tern in the offset direction and it made the data much more inscrutable.

Orientation similarity is more complicated, as it has a few possible representations like Eu-

ler angles, rotation matrices, or quaternions which all have advantages and disadvantages.

Quaternion representation was chosen, based on the recommendation of Huynh (2009)

(Huynh, 2009). They compared metrics of 3D rotation similarity proposed by other liter-

ature and concluded, that quaternion is spatially and computationally more efficient and

has no problem with iso-errors.

The similarity was calculated using the angle θ which represents the rotation required to

get from one quaternion to the other around a specific axis. This avoids the problem that

a quaternion q and -q represent the same orientation. The formula to calculate the angle

θ is shown in (3). In order to bring it in the range of [0,1], θ is afterward divided by Pi.

θ = cos−1(2 ∗Dot(q1, q2)2 − 1) (3)

q1 and q2 are the prediction and ground truth quaternions. The inner product (Dot) of

their four components is calculated exactly like an inner vector product.

The results of the mean distance to ground truth for each object plane in each of the

three positions is depicted in figure 36. The overall mean of all axis is in the rightmost

column of that diagram with a distance of M = 10.04 mm (SD = 11.75 mm) for the

x-axis, M = 7.75 mm (SD = 10.35 mm) for the y-axis, M = 25.92 mm (SD = 29.71 mm)

for the z-axis and M = 38.28 mm (SD = 25.53 mm) for the vector distance. All results

are included in the appendix in table 1 for further reading. In general, there is no

remarkable difference between the three positions, as well as the three different object
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Figure 38: Quaternion similarity for all 72 poses, with the mean across all as an orange
line.

planes. The z-axis has generally the highest offset, which was expected as mentioned

before. The high SD on the z-axis gives further indication that the depth prediction is

quite unstable and this affects the vector distance as it depends on all three axes.

Figure 37 depicts the stability of the position prediction for each individual pose. It

represents the SD across all 20 frames taken for all poses. The horizontal lines are the

mean stability for each axis. Both x- and y-axes have a similar mean of M = 2.19 mm

and M = 1.72 mm offset respectively. With only a few poses where the deviation is

higher than a 5 mm offset. This contrasts with the z-axis which has a mean of M = 6.01

mm offset and is almost always higher than the two other axes. On the Back Left

position, Plane y, 6 is a remarkable outlier for the z-axis with a SD of 63.53 mm, which

is three times as high as the second-highest value. All results are included in the

appendix, table 2.

Quaternion similarity, in contrast to the positional offset, is bounded between 0◦ and 180◦

and can, therefore, be represented in percentage. 180◦ meaning that the predicted and

ground truth orientations are in opposite directions (0% similarity), and 0◦ is perfectly

aligned (100% similarity). The graph in figure 38 depicts all 72 orientation similarities.

The mean across all orientation is M = 0.78 (SD = 0.021), the exact values for each sim-

ilarity can be found in the appendix in table 3.

In total, 11 orientation similarities are lower than the mean, with all of them being dras-

tically lower. This is caused by the fact that the orientation is either correctly predicted,

but the last fitting to the end orientation is not perfect (similarity > 0.8), or the initial

orientation already predicts the wrong base rotation and is therefore totally off (similarity

< 0.5). This oddity is elevated by the fact that the test object is very angular and sym-

metric, meaning if the system mistakes one of the object sides for another the prediction

is minimum 90◦ off. For these 11 low predictions the SD varies drastically from SD =

0.0001 for <Back Left, Plane z, 1> and SD = 0.407 for <Back Left, Plane x, 5>. These

variations are caused by inconsistent base predictions. For the similarities with high SD,

the prediction stability is very low and across the 20 taken frames, it switches the base

prediction between two or more. For low SD the base prediction is always the same, but

wrong. A pattern that emerges is the prediction failure for the first pose for Plane x and
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Figure 39: Example of first pose prediction for all three rotation planes. The first two are
the first the x-plane, then the z-plane. The third one is the y-plane.

Plane z. All first poses for these planes are consistently wrong, which has to do with the

view the camera has on the test object. Figure 39 a) shows that the camera angle makes

it hard to discern if the small outcrop is in the front or the other side. This effect is not

present for Plane y, as depicted in 39 b).

7.2.3 Occlusion test setup

Compared to testing the pose, occlusion testing is straightforward. Two objects are placed

in the working area of the robot in specific relations to each other, first not overlapping in

the camera frame. Then they are slowly moved closer together until the pose prediction

starts to degrade. The overlap area of the bounding boxes at the point of recognition

failure reveals how robust to occlusion the system is. This was done for two different

spatial relations, each in 16 different orientations to cover different scenarios. These are

shown in figure 41. In order to capture the moment of failure, a small addition to the

recognition system was written. The predictions during the time of moving the objects

closer together are done continuously, during this time it keeps the previous frame and

prediction values. As soon as the prediction results meet one of three different cases,

it saves the previous and current image and the prediction values and stops. Figure 40

depicts these three cases, the first case is when the size of the bounding box suddenly

changes drastically, the second one is when a different amount of objects get detected and

the third is when one of the predicted orientations suddenly changes drastically. This

reliably captures the frame of failure and the frame right before its occurrence.

7.2.4 Occlusion result analysis

Evaluating the overlap percentage was done with intersection over union, which is an

established statistical method for measuring the similarity of bounding boxes and other

sample sets. It is calculated by dividing the intersection of two bounding boxes with the
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Figure 40: Examples of the three different failure cases through occlusion. Left image is
a wrong bounding box size prediction, center image are too many objects detected and
right image is wrong orientation prediction.

Figure 41: All 32 poses right before prediction failure through occlusion. The left 16
images are for relation one, the right for relation two.

union they form. Figure 41 shows all setup variations at the point of failure to give a

general impression of the occlusion robustness. Each row represents a specific orientation

for the stationary object and the columns for the moved object. In the left 16 images,

the moving object is right of the stationary one and being pushed closer, and for the

right 16, it is behind the stationary object. An overlap of 0 means no overlap and 1 is

completely occluded. The mean overlap percentage from the camera frames’ view for both

object relations are depicted in figure 43. The total overlap percentage is the mean over

both relations with M = 0.075 (SD = 0.044). The main failure case which leads to the

low percentage is the prediction of additional non-existent objects, as shown in the center

image in figure 40. 29 of 32 failures were caused by this, which is about 90%. Figure 43

depicts all 32 percentages. Here it is visible that the highest overlap is 21.9%, which is

still not close to 50%. Interesting is number 3 of relation 1, which has no overlap. The

reason for this may be a slightly too high movement speed of the object, that the previous

frame was still not overlapping and the next already more than a few percents. As the

mean percentage of relation 1 is M = 0.047 (SD = 0.031), only a centimeter or two might

already be too much.
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Figure 42: Graph of the mean overlap percentage, as intersection over union, of each
relation and the total.

7.3 Discussion

The design verification and recognition system test gives a clear picture of the shortcom-

ings and strengths of the system. The general result of the user based verification is, that

the design of the robot control and the advanced visual cues are working as intended. The

participants had no problem using the system and only minor details where stated in the

interview when asked if something was confusing. Except for the limited gripper rotation,

which was expected and considered. The success rates of the task additionally show that

it is possible to perform precise object manipulation even after only a short introduction.

Considering that this system is intended for utilization in an assembly workstation sce-

nario, the users are expected to use it over longer periods on a daily basis. Which is likely

to increase their performance and decrease the need for the system to be usable at an

expert level from the beginning. The precision with a mean of approximately 1 cm offset

may need improvement, but this study can only give a broad impression on this specific

topic. The accumulation error for placing and the fact that the scenario is somewhat

contrived makes it hard to transfer the results to different scenarios.

On the other hand, the recognition system still needs improvement. The main short-

coming is the frailty to occlusion. With the failure of recognition at a mean of approx.

7.5% overlap between the two test objects it is unsuitable for a working area with many

objects, which might occlude each other. Especially in an assembly task, this may often

be the case which makes it a crucial point. The point of failure was mainly the 2D object

detection, which very quickly predicted wrong bounding boxes that propagate down to the

pose system. Which assumes that the object will fill the given bounding box and therefore

makes a wrong prediction as well. The position prediction has the worst performance

for the z-axis (depth). In the complete system, this flaw is alleviated through the pose

adjustment during the pose result processing, as it places the object on the table if the

prediction lets it float in the air. The results of the recognition system test additionally

give a target value for an object selection threshold, which is used to give a cutoff value for

selecting the correct object. More details were previously described in 6.6.3. Rotational

prediction quality was generally high enough for actual use, with a few exceptions. Es-
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Figure 43: Graph for all 32 overlap percentages.

pecially the fact that for both the x- and z-plane the system consistently failed when the

object was aligned face-on to the camera is undesirable. This is most likely caused by the

high symmetry of the object in combination with the specific angle of the camera.

With both studies in mind, it is clear that the system cannot function at the level of

precision it needs to, in order to support the user in tricky assembly tasks. The main

reason is the recognition systems inconsistency. In many situations, it might be precise

enough to help the user, but the performance is too dependent on arbitrary translational

and rotational factors of objects. Making it unreliable and therefore untrustworthy for

the user. High consistency would be required to allow the user to perform the tasks of,

for example, the small user study.
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8 Conclusion

In this thesis, a novel prototype was explored that uses AR in combination with object

recognition to support physically impaired people to work with a robotic arm. Specifically

trying to give missing perceptual information about the scene when the user is physically

bound to a fixed viewpoint. The information is delivered through the use of spatially placed

holograms, called advanced visual cues, that add missing relational context of objects and

the robotic gripper. This is especially important for depth information, like the alignment

of the gripper with objects, or objects with one another. To achieve this goal an AR control

system for the robotic arm was developed in cooperation with Franziska Rücker, multiple

advanced visual cues for picking and placing objects were designed that use a object pose

recognition system, which was adapted from state-of-the-art research in computer vision

and machine learning.

To evaluate the performance of the developed prototype, two studies were performed. The

first was a small user study that evaluated whether the design of the control scheme and the

advanced visual cues are usable and work as intended, with the usage of a fake recognition

system to decouple the performance dependency. The second was a technical evaluation

of the recognition system on precision, stability, and robustness against occlusion. The

results of the user study show that the designed system works as intended and the study

participants were able to perform difficult pick and place tasks with an accuracy of approx.

1 cm mean offset. It additionally showed that the system is intuitive enough that it

can be grasped in a short amount of time. The technical evaluation revealed that the

recognition system has, in principle, high precision for predicting the object poses, but is

too unreliable to be used in a real-world scenario. While the precision is generally less

than 1 cm positional offset and has a 90% accuracy for orientation, specific objects poses

yield considerably worse results. Additionally, the robustness against occlusion is too low

to allow real-world application.

In conclusion, even though the developed prototype was not entirely successful it achieves

most goals that were initially set. The flawed pose recognition system provides insights on

current problems in real-world applications of recognition systems. It additionally provides

a sound basis for further research as it is decoupled from the main system and can easily

be switched out or adapted further.

8.1 Future Work

The main topic for further work is the pose recognition system. There are multiple

possible directions to proceed from the current state of the recognition system and

initially it is important to decide which makes the most sense. The first direction would

be, to try and improve the existing system further with the usage of hand-labeled

real-world data for the 2D detection network or similar ideas. Secondly would be, to

exchange parts of the current recognition system, like the 2D detection network, with

other, more appropriate ones. For example, a 2D object segmentation network would be

able to return only the pixels that contain the detected objects, separating it from the

image background and making the pose detection less error-prone. Another possible

direction is to not just switch the underlying networks, but overhaul the approach. With
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the usage of a depth camera attached to the robot gripper, a fine-grained 3D mesh could

be build that has a high fidelity in contrast to the one constructed by the HoloLens.

Instead of taking images with a webcam triggered on certain events, the robotic arm

could instead make a sweep above the working area and let the depth camera create new

depth data and adjust the constructed mesh. With the use of such a mesh, pose

recognition might be much more robust and accurate.

Another topic for further research is the rotational constraint of the robotic gripper. It

made sense for this prototype to limit the rotation to one axis, but for a real-world system,

it is necessary to have full rotational freedom. As it is currently not possible to get an

object into a specific orientation, making it impossible to recover overturned objects. In

order to achieve this, the control scheme needs to be drastically adjusted to accommodate

for the added complexity. This is not an easy task as the system is already at an appro-

priate difficulty to learn and use, which might be hard to keep.

Technical limitations of the HoloLens are also another starting point for future work. The

uneven weight distribution is painful after wearing the device for a while for people with no

physical limitations, but make it almost impossible to use for many people with physical

constraints, like tetraplegics. Additionally, the small FOV limits the user’s spatial aware-

ness for the holograms and leads to clutter in the center of the user’s view. Therefore,

switching to another AR device might be required at some point. The HoloLens 2 would

be a logical choice, as it possesses a superset of the features the first HoloLens offers. It

would not be too difficult to convert the prototype to it, as the technological basis is the

same and it addresses the mentioned problems.

Lastly, as the conducted user study was done with participants who were not physically

impaired, performing another study with the actual target group would be important. Not

only might this give more insight into what the technical limitations of the prototype are

but additionally provide a completely different perspective. As mentioned in section 2.2.2,

people who are dependent on others due to physical impairment have a different focus on

the kind of support given and on the degree of system autonomy. This would help shape

further refinement of the prototype to bring it closer to a system that is usable in the real

world.
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Abbreviations

AAE Augmented Autoencoder

AR Augmented Reality

CNN Convolutional Neural Networks

CSV Comma-Separated Values

DoF Degree Of Freedom

DOT Dominant Orientation Templates

EMG Electromyography

EOG Electrooculography

FOV Field Of View

FPS Frames Per Second

HCI Human-Computer Interaction

HMD Head-Mounted Display

HOG Histograms of Oriented Gradients

HRC Human-Robot Collaboration

HRI Human-Robot Interaction

ICP Iterative Closest Point

IMU Inertial Measurement Unit

IR Infrared

L2 Least square

M Mean

MARG Magnetic, Angular Rate, and Gravity

MIA Human-Robot Interaction at the Workplace (Mensch-Roboter Interaktion im

Arbeitsleben bewegungseingeschränkter Personen)

MR Mixed Reality

ORB Oriented FAST and Rotated BRIEF

ORK Object Recognition Kitchen
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PnP Perspective-n-Point

RFID Radio-frequency Identification

ROS Robot Operating System

SD Standard Deviation

SDK Software Developement Kit

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SSD Single Shot Multibox Detector

TCP Transmission Control Protocol

TCP Tool Center Point

UDP User Datagram Protocol

UI User Interface

USM Ultrasonic Motor

VR Virtual Reality

XML Extensible Markup Language

Glossary

Iterative Closest Point

Iterative Closest Point is an alogrithm that aligns point clouds. It needs an initial

rough alignment and moves iteratively through each point to minimize the distance

between them.

Perspective-n-Point

Perspective-n-Points calculates the pose of a calibrated camera given n-3D points

and their corresponding 2D projections (Lepetit, Moreno-Noguer, & Fua, 2009).

affordance

According to psychologist Gibson (Gibson, 1977), affordance was defined to be the

possibility of an action on an object or environment. The definition has been very

widely used in many research fields such as perceptual psychology, cognitive psy-

chology, environmental psychology, industrial design, human-computer interaction

(HCI), interaction design, artificial intelligence, and robotics. In robotics, the con-

cept of affordance has been mainly introduced in the research on traversability of

environments (Yamanobe et al., 2017).
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Cosine Similarity

The Cosine Similarity measures the similarity of vector orientations using inner

product space. The range of this similarity is between [-1, 1] where two vectors

facing the same direction have a similarity of 1, two vectors with a 90◦ angle have a

similarity of 0 and when facing opposite direction the similarity is -1.

electro-oculography

Electro-oculography is a measuring technique for eye movement. It uses electrodes

on either side of the eye to measure deviations of the standing potential that occur

during eye movement in contrast to staying still (Gips, 1996).

end-effector

The end in a kinematic chain of joints and links. On a robotic arm this could be

some tool or gripper.

Fitts’ law

Is an established predictive model for human movement. It is used to model the act

of pointing of any kind (phyical with finger, mith a mouse cursor, etc.) and evaluate

its performance.

inside-out tracking

Inside-out tracking is the technique for tracking the position and/or orientation of

a device without external sensor technology, everything is integrated in the specific

device. This has the advantage of not confining the tracking to a specific location

and enables moving around a larger spaces.

intrinsic camera parameters

Intrinsic camera parameters are components of the camera matrix, which define

a pinhole camera model. They define three different camera properties, the focal

length, the axis skew coefficient and the cameras’ principal point.

RANSAC

Random sample consensus (RANSAC) is an iterative method for parameter esti-

mation of a given mathematical model from a set of observed data that contains

outliers.

registration

Registration (or 3D-registration) tries to reconstruct an environment in 3D from

depth-sensor data and determines the relative motion of the camera therein

(Bellekens, Spruyt, Berkvens, & Weyn, 2014).

RGB-D

RBG-D data is a color image with three channels (Red, Blue, Green) and an addi-

tional Depth channel.
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stereoscopy

Stereoscopy uses 2D images to create the illusion that the image is 3D. This is done

by producing two images of the same scene from slightly different angles, to imitate

the position of the two eyes. This effect is only possible because of the binocular

vision of humans (Amy Tikkanen, 2013).
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Appendix

Table 1: Data for figure 36.

Mean Distance in mm Standard Deviation in mm
x Axis y Axis z Axis Distance x Axis y Axis z Axis Distance

Center

Plane x 9.390 13.492 21.755 27.952 6.917 8.240 11.921 14.832
Plane y 4.499 1.102 24.567 37.808 15.168 5.973 37.939 30.011
Plane z 12.983 2.692 19.529 29.508 10.896 4.657 36.948 34.526

Front Right

Plane x 17.938 13.611 33.813 41.749 17.264 14.641 24.661 32.062
Plane y 24.032 4.148 23.648 34.466 9.717 4.746 11.868 14.963
Plane z 6.542 1.837 19.849 26.018 11.091 10.282 19.744 19.539

Back Left

Plane x 1.314 9.485 19.432 42.497 10.419 16.848 42.992 30.068
Plane y 7.518 15.586 45.907 67.408 12.171 15.341 55.824 36.916
Plane z 6.136 7.713 24.747 37.106 12.093 12.420 25.497 16.831

Mean 10.039 7.741 25.916 38.279 11.748 10.350 29.710 25.528
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Table 2: Data for figure 37.

Standard Deviation in mm

Center Front Right Back Left
x Axis y Axis z Axis x Axis y Axis z Axis x Axis y Axis z Axis

Plane x

1 6.030 6.776 6.934 3.074 1.701 5.847 5.613 6.735 5.477
2 0.317 0.108 0.650 2.725 3.125 3.410 0.500 1.858 12.345
3 0.692 1.928 8.657 2.021 3.698 4.328 1.497 2.528 9.380
4 0.501 0.234 1.569 0.480 0.351 0.897 1.657 0.729 11.738
5 8.630 3.547 6.965 0.449 0.259 0.476 1.831 4.202 18.339
6 2.076 1.521 10.672 0.493 0.431 0.625 1.920 6.021 13.450
7 0.253 1.647 3.580 0.662 1.012 0.778 1.027 1.345 1.884
8 0.169 0.152 1.085 0.330 0.402 0.518 0.216 0.478 1.445

Plane y

1 0.570 0.665 5.510 4.848 4.748 8.355 2.454 2.441 10.194
2 0.239 0.291 1.073 0.363 0.236 0.506 0.168 0.434 1.473
3 3.151 3.329 15.993 0.758 0.870 1.799 0.352 1.293 3.943
4 6.924 1.293 14.153 0.350 0.196 0.402 0.241 0.357 1.083
5 4.176 0.962 9.151 0.594 0.752 1.189 0.890 3.181 13.510
6 11.184 2.469 13.566 0.263 0.266 0.392 18.054 10.461 63.529
7 5.210 0.793 1.182 0.615 0.624 1.242 0.936 1.885 8.732
8 0.234 0.148 0.913 0.448 0.757 1.433 0.152 0.319 1.176

Plane z

1 5.415 1.900 20.393 2.480 4.396 3.678 0.441 1.049 3.333
2 0.234 0.248 0.678 7.464 2.967 10.556 0.423 0.740 1.809
3 0.452 0.639 4.717 0.449 0.267 0.599 1.900 0.885 1.307
4 0.358 0.337 3.753 1.144 0.812 1.978 0.343 0.641 1.578
5 3.642 1.666 13.262 11.073 9.602 18.981 1.258 1.526 6.552
6 0.294 0.224 0.856 0.755 0.367 1.233 0.332 0.481 1.156
7 4.210 0.937 7.771 4.782 2.305 6.811 0.199 0.425 1.069
8 0.224 0.220 0.903 2.792 0.479 4.745 0.639 1.475 3.630
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Table 3: Data for figure 38.

Center Front Right Back Left
Similarity
in %

SD in % Similarity
in %

SD in % Similarity
in %

SD in %

Plane x

1 0.30914 0.07019 0.08031 0.03774 0.42356 0.03763
2 0.89915 0.00068 0.83332 0.00023 0.93700 0.00004
3 0.91141 0.00458 0.82008 0.00012 0.88524 0.00931
4 0.88672 0.00007 0.83499 0.00005 0.91092 0.00008
5 0.85270 0.01764 0.87270 0.00655 0.31347 0.40712
6 0.90345 0.00882 0.85384 0.00260 0.92265 0.01667
7 0.90667 0.00394 0.86085 0.00008 0.96518 0.00365
8 0.93628 0.00007 0.92358 0.00006 0.92932 0.01578

Plane y

1 0.92018 0.00008 0.86529 0.00942 0.93560 0.00005
2 0.89209 0.00007 0.86790 0.00023 0.88750 0.00005
3 0.87551 0.00006 0.85826 0.03445 0.94314 0.00006
4 0.92260 0.00003 0.85206 0.00005 0.91524 0.00003
5 0.89370 0.00354 0.85122 0.00006 0.90735 0.01148
6 0.18961 0.23493 0.83371 0.00003 0.11425 0.18255
7 0.93349 0.02850 0.84581 0.00368 0.96727 0.00465
8 0.90086 0.00004 0.84173 0.00005 0.94902 0.00004

Plane z

1 0.08631 0.02012 0.23269 0.01278 0.02938 0.00011
2 0.88472 0.01240 0.84213 0.00826 0.20615 0.23583
3 0.87627 0.00486 0.84720 0.00091 0.81251 0.00005
4 0.90143 0.00007 0.88738 0.00006 0.80983 0.00007
5 0.05213 0.00624 0.83814 0.01133 0.79710 0.01333
6 0.89235 0.00003 0.85000 0.00026 0.90724 0.00012
7 0.90509 0.00504 0.83858 0.00007 0.79567 0.01522
8 0.92025 0.00212 0.88905 0.00025 0.91631 0.00004

Table 4: Questions asked for the short interview at the end of the study.

Q1 Tell us about the strategy you used to successfully execute the task.
Q2 What helped you the most to succeed in the task?
Q3 What help you the most to pick an object and what help you the most to place an object?
Q4 Did you feel the urge to move your body to left or right to change your visual angle?
Q5 Did you feel confused at any point? How? When? Explain your answer
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Table 5: Shortened answers given by the participants in the interview (Questions from 4).

Answers (Shortened) Occurances Percentage

Q1 Strategy
Rotation Gripper 6 85.714
Incorporate moving virtual objects 1 14.286

Q2 Helped Most

Cursor 1 14.286
Ghost 3 42.857
Gripper Extensions 2 28.571
Gripper Reach 1 14.286

Q3 Help Pick

Cursor 1 14.286
Gripper Reach 5 71.429
Laserpointer 1 14.286

Q3 Help Place
Ghost 5 71.429
Gripper Reach 2 28.571

Q4 Urge To Move

No 1 14.286
A Bit 1 14.286
Yes 5 71.429

Q5 Confusion

Visualization of Ghost 2 28.571
Limited Rotation 2 28.571
Graspdifferences 1 14.286
No 2 28.571

Various

More comfortable HoloLens 1 14.286
Colorscheme 1 14.286
No 1 14.286
Perspective change 1 14.286
Precision mode in all directions 1 14.286
Improve moving virtual objects 1 14.286
Less visual clutter 1 14.286

Total 7 100.00
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Table 6: Content of the USB-Stick.

Description Location

Masterthesis File of the thesis. ”/Dierks Tim MasterThesis.pdf”

Videos
Video of the prototype. In-
cluding the part of Franziska
Rücker.

”/Videos/MasterThesis Ruecker Dierks.mp4”

Demonstration of Pose Recog-
nition system in small video
clips.

”/Videos/6D Pose videos/*.ogv”

Sourcecode

Unity project of HoloLens ap-
plication.

”/Application Projects/UnityProject.zip”

Python code of recognition
system.

”/Application Projects/PoseRecognitionProject.zip”

XML to CSV conversion appli-
cation.

”/Application Projects/CSV Converter App.zip”

Result analysis for stabil-
ity/accuracy test application.

”/Application Projects/AccuracyStabilityTest App.zip”

Study Data
Results of user study. ”/Study Results/UserStudy Data.xlsx”

Results of stability/accuracy
test.

”/Study Results/StabilityAccuracy Data.xlsx”
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