Maschinenbau Bocholt
Filtern
Erscheinungsjahr
Dokumenttyp
Schlagworte
- Bionik (8)
- Strukturoptimierung (4)
- adhesion (4)
- Gespenstschrecken (3)
- Haftorgan (3)
- Intercultural Collaboration (3)
- Leichtbau (3)
- stick insects (3)
- Collaborative Online International Learning (2)
- Competency-Oriented Exams (2)
Abstract
This paper presents an integrated approach combining in-person teaching with digital assessments in a mechanical engineering course, leveraging a blended learning environment to enhance both physical and remote instructions. The primary focus is on addressing challenges associated with digital exams, such as hardware and software limitations, connectivity issues, and the risk of cheating. To mitigate these barriers for digital exams, the paper proposes creating unique exam tasks based on student IDs and employing semi-automatic grading of computer drawings using Python scripts, which streamline the assessment process while ensuring accuracy and fairness.
Traditional assessment methods typically involve written exams, computer-based tests, practical labs, oral exams, and project-based assessments. These methods require students to attend exams in person, with activities strictly monitored to prevent cheating. However, this approach highlights the need to transition from traditional methods to digital assessments, focusing on knowledge application rather than simply recalling the information. In order to show the possibility of such a transition, a Computer-Aided Design (CAD) course is employed as a case study, where theoretical knowledge is assessed through digital quizzes and practical skills via design challenges and final exams. By creating unique tasks based on student IDs, the course ensures exam integrity and fairness and still allows students to work on the assigned problem on their own computer device and on their own time schedule. Additionally, a semi-automatic system compares the volumetric properties of student-generated 3D models with reference solutions using Python scripts. This approach significantly reduces manual grading workload while maintaining high assessment standards.
The course structure aligns learning activities with desired outcomes through the Constructive Alignment of Biggs et. al. Weekly quizzes handled via Moodle automatically grade the theoretical knowledge of the students, while biweekly tutorials and practical sessions support the transition from theory to practical application. Design challenges, graded and contributing to the final exam score, motivate students and provide continuous feedback and assessment. This dynamic learning environment not only engages students but also enhances the retention of theoretical knowledge and its practical application through digital tools.
In conclusion, this paper showcases the successful integration of digital assessment methodologies in mechanical engineering education. By addressing and overcoming challenges early, and aligning learning activities with outcomes, the blended learning approach enhances the educational experience. The strategic use of unique exam tasks and semi-automatic grading systems not only ensures fair and accurate assessments but also prepares students for the demands of the digital age in their professional careers.
When organizing intercultural and interdisciplinary Project-Based Learning (PBL) activities across Higher Education Institutions (HEIs), the organizational and resource implications, along with the associated financial challenges, soon become crucial. Even promising approaches may not take off as a simple ‘return on investment’ view and funding decision may not fully address their various impacts on students, staff, institutions and society.
This paper explores the experiences within a distributed interdisciplinary project-based learning program run from 2020 to 2023 and involving more than 150 students from four continents learning 21st century skills by collaborating over one semester to address real-world problems faced by clients in partner countries. While the primary goal of this distributed interdisciplinary and intercultural project-based learning program was to offer students a truly Global Intercultural Project Experience (GIPE), this paper explores its broader impact. We found that the program significantly influenced both the academic and administrative staff at all partner universities. Furthermore, we examine the program's effect on the participating institutions themselves over the four-year period. Our conclusion is that the invaluable benefits of such interdisciplinary project-based learning extend well beyond financial metrics. They include enhanced student learning experiences, strengthened cooperation and mutual learning between academics and administrative staff, improved institutional reputation, and positive societal impact.
Thus, we worked hard to convince both our university management and the world's largest funding organisation for the international exchange of students and researchers to grant financial support for another 3-year period in 2025 to 2027 during which the GIPE concept will be further developed and a permanent organizational structure shall be established based on an extended network of partner institutions and sponsors around the world.
Unleashing Personalized Education Using Large Language Models in Online Collaborative Settings
(2024)
The Artificial Intelligence community has long pursued personalized education. Over the past decades, efforts have ranged from automated advisors to Intelligent Tutoring Systems, all aimed at tailoring learning experiences to students' individual needs and interests. Unfortunately, many of these endeavors remained largely theoretical or proposed solutions challenging to implement in real-world scenarios. However, we are now in the era of Large Language Models (LLMs) like ChatGPT, Mistral, or Claude, which exhibit promising capabilities with significant potential to impact personalized education. For instance, ChatGPT 4 can assist students in using the Socratic method in their learning process. Despite the immense possibilities these technologies offer, limited significant results are showcasing the impact of LLMs in educational settings. Therefore, this paper aims to present tools and strategies based on LLMs to address personalized education within online collaborative learning settings. To do so, we propose RAGs (Retrieval-Augmented Generation) agents that could be added to online collaborative learning platforms: a) the Oracle agent, capable of answering questions related to topics and materials uploaded to the platform.; b) the Summary agent, which can summarize and present content based on students' profiles.; c) the Socratic agent, guiding students in learning topics through close interaction.; d) the Forum agent, analyzing students' forum posts to identify challenging topics and suggest ways to overcome difficulties or foster peer collaboration.; e) the Assessment agent, presenting personalized challenges based on students' needs. f) the Proactive agent, analyzing student activity and suggesting learning paths as needed. Importantly, each RAG agent can leverage historical student data to personalize the learning experience effectively. To assess the effectiveness of this personalized approach, we plan to evaluate the use of RAGs in online collaborative learning platforms compared to previous online learning courses conducted in previous years.
This paper discusses the experiences of a distributed interdisciplinary project-based learning program for students across continents. For the years 2020 until 2023, we received seed-funding for four annual projects to engage students from Germany (Europe), Namibia (Africa), Indonesia (Asia), and Peru (Latin-America) to collaborate over one semester on interdisciplinary projects contributing to the solution of some real-life client’s problems in the partner countries. During this period, more than 150 students embarked on these projects with 116 of them being selected for a scholarship for an international mobility. With the guidance and support by academics from all partner universities, the students success-fully completed each project expressing deep appreciation for the learning opportunities while over¬coming challenges of working across widespread time zones, different cultures, changing requirements, and various technical difficulties.
While the primary aim of this distributed interdisciplinary and intercultural project-based learning program was to provide students with a truly Global Intercultural Project Experience (GIPE), in this paper we investigate on its impact in a broader sense as it was observed that this program also had a significant impact on both academic and administrative staff at all partner universities. Finally, we also reveal the impact of this four-year-program on the participating institutions themselves and conclude that the invaluable returns of such interdisciplinary project-based learning extend far beyond financial metrics. It encompasses enhanced student learning experiences, strengthened cooperation and mutual learning between academics and administrative staff, as well as institutional reputation, and societal impact.
This paper reveals various approaches undertaken over more than two decades of teaching undergraduate programming classes at different Higher Education Institutions, in order to improve student activation and participation in class and consequently teaching and learning effectiveness.
While new technologies and the ubiquity of smartphones and internet access has brought new tools to the classroom and opened new didactic approaches, lessons learned from this personal long-term study show that neither technology itself nor any single new and often hyped didactic approach ensured sustained improvement of student activation. Rather it needs an integrated yet open approach towards a participative learning space supported but not created by new tools, technology and innovative teaching methods.
This paper presents a pragmatic approach for stepwise introduction of peer assessment elements in undergraduate programming classes, discusses some lessons learned so far and directions for further work. Students are invited to challenge their peers with their own programming exercises to be submitted through Moodle and evaluated by other students according to a predefined rubric and supervised by teaching assistants. Preliminary results show an increased activation and motivation of students leading to a better performance in the final programming exams.
Desert ants Cataglyphis spec. monitor inclination and distance covered through force-based sensing in their legs. To transfer this mechanism to legged robots, artificial neural networks are used to determine the inclination angle of an experimental ramp from the motor data of the legs of a commercial hexapod walking robot. It is possible to determine the inclination angle of the ramp based on the motor data of the robot legs read out during a run. The result is independent of the weight and orientation of the robot on the ramp and hence robust enough to serve as an independent odometer.
Ventilanordnung und Verfahren zum Kühlen eines Wärmetauschers eines Fahrzeugs [Offenlegungsschrift]
(2023)
Die Erfindung betrifft eine Ventilanordnung umfassend wenigstens ein durch Gas, insbesondere Luft, durchströmbares Ventilelement (1, 1') mit einer Öffnung, wobei der Öffnung ein Dichtelement zugeordnet ist, mit dem die Öffnung verschließbar und/oder öffenbar ist, wobei das Dichtelement durch einen Dichtflächenbereich eines Plattenelements ausgebildet ist, vorzugsweise eines in zumindest einem möglichen Betriebszustand planen Plattenelements ausgebildet ist, wobei das Dichtelement der Öffnung des wenigstens einen Ventilelements gegenüberliegt und der das Dichtelement bildende Dichtflächenbereich des Plattenelements mittels wenigstens eines Spiralarmes mit einem Randflächenbereich des Plattenelements einstückig und relativ zum Randflächenbereich beweglich verbunden ist und der wenigstens eine Spiralarm von wenigstens einer um den Dichtflächenbereich verlaufenden spiralförmigen und durch Gas durchströmbare Ausnehmung in dem Plattenelement zumindest bereichsweise umgeben ist. Die Erfindung betrifft auch ein Verfahren zum Kühlen eines Wärmetauschers in
einem Fahrzeug.