Refine
Year of publication
- 2016 (187) (remove)
Document Type
- Article (70)
- Conference Proceeding (30)
- Part of a Book (26)
- Contribution to a Periodical (18)
- Book (17)
- Course Material (11)
- Review (6)
- Report (5)
- Working Paper (2)
- video (1)
Language
- German (135)
- English (50)
- Multiple languages (1)
- Romanian (1)
Keywords
- Bionik (2)
- Empirische Methoden (2)
- Energiepolitik (2)
- Erneuerbare Energien (2)
- Fachjournalismus (2)
- Gespenstschrecken (2)
- Haftorgan (2)
- Kommunikationswissenschaft (2)
- Rechtswissenschaft (2)
- Wissenschaftliches Arbeiten (2)
Institute
- Wirtschaftsrecht (83)
- Informatik und Kommunikation (22)
- Institut für Internetsicherheit (14)
- Westfälisches Institut für Gesundheit (13)
- Westfälisches Energieinstitut (12)
- Strategische Projekte (9)
- Wirtschaft und Informationstechnik Bocholt (8)
- Elektrotechnik und angewandte Naturwissenschaften (6)
- Maschinenbau Bocholt (6)
- Institut für Innovationsforschung und -management (4)
- Maschinenbau und Facilities Management (3)
- Institut Arbeit und Technik (2)
- Wirtschaft Gelsenkirchen (2)
- Wirtschaftsingenieurwesen (1)
Kommunikationswissenschaft
(2016)
Empirische Methoden
(2016)
Wissenschaftliches Arbeiten
(2016)
Medienforschung
(2016)
Foliensatz Branding
(2016)
Nachdem die Fachgruppe Medieninformatik (FG MI) der Gesellschaft für Informatik e.V. (GI) bereits in den Jahren 2009 und 2010 Workshops zu den Themen „Medieninformatik in Forschung, Lehre und Praxis“ (Herczeg 2009) bzw. „Basismodule und Basiscurricula für die Medieninformatik“ (Herczeg 2010) durchgeführt hat und den Input aus den Workshops in der Folge überwiegend im Kreis der FG-Leitung verarbeitet hat, ist es Zeit mit den dort entstandenen Ideen wieder in die größere Runde zu gehen. Dieser Beitrag ist als Diskussionspapier für den kommenden (aber auch für weitere) Workshop(s) im Bereich der Medieninformatik gedacht. Die Ideen stammen im Wesentlichen aus der Arbeit der FG-Leitung bzw. einzelner engagierter Mitglieder der FG MI. Gemäß der Tradition der FG erheben die Darstellungen keinen Richtlinienanspruch, sondern sollen Diskussionen anregen.
Ressortjournalismus
(2016)
Lehrredaktion
(2016)
Biofunktionalisierung von Titanimplantaten mit einem Multilayersystem aus BMP-2 und Fibronektin
(2016)
Kultureinrichtungen als Arbeitgeber sehen sich zunehmend veränderten Rahmenbedingungen der Mitarbeitergewinnung und -bindung gegenüber, die sich aus mehreren gesellschaftlichen Megatrends ergeben. Zentral sind dabei zum einen der demografische Wandel und die damit einhergehende Überalterung der Arbeitnehmer, zum anderen geänderte Wertvorstellungen und Arbeitsmotive der jüngeren Arbeitnehmergeneration, der sogenannten „Generation Y“. Beides hat weitreichende Implikationen für das Recruiting und die dauerhafte Bindung von Mitarbeitern in zahlreichen Branchen an das jeweilige Unternehmen. Vorgestellt werden im folgenden Beitrag die Ergebnisse einer Studie, die zum einen Arbeitsmotivation und -zufriedenheit von Beschäftigten im Kultursektor untersucht hat und dabei den Fokus auf Wert- und Arbeitshaltungen der Generation Y gelegt hat. Zum anderen wurden die Bedeutung der Rahmenarbeitsbedingungen erhoben, insbesondere die Rolle der Führung sowie von Flexibilität am Arbeitsplatz.
Handbuch Sporttourismus
(2016)
Management von Medienmarken
(2016)
Gelingendes Projektmanagement in der Schule am Beispiel der Potenzialanalyse in der achten Klasse
(2016)
The Unfitted Discontinuous Galerkin Method for Solving the EEG Forward Problem: A Second Order Study
(2016)
Intelligente Helfer als persönlicher Assistent. Wie sicher und vertrauenswürdig sind Roboter?
(2016)
Die Zeit nach dem Passwort. Handhabbare Multifaktor-Authentifizierung für ein gesundes Eco-System
(2016)
Kurzübersicht der aktuellen Projekte des Westfälischen Energieinstituts.
Datenanalyse beim CRM
(2016)
Intelligenzexplosion
(2016)
This experimental work deals with the preparation and investigation of PEM fuel cell electrodes, which are obtained using Graphene Related Material (GRM) serving as catalyst support material for platinum nanoparticles. The applied GRM belong to the group of carbon nanofibers and exhibits a helical-ribbon structure with dimensions of 50 nm in diameter and an average length up to a few µm. Furthermore, utilized GRM provide a superior graphitisation degree of about 100 %, which leads to both high corrosion resistance and low ohmic resistance. Material stability plays one of the main roles for long term fuel cell operation, whereby a great electrical catalyst contact combined with high specific surface area yields in high fuel cell performances.
Prior to GRM dispersion and deposition onto a gas diffusion layer, the graphene structures are functionalized by oxygen plasma treatment. Through this step, functional oxygen groups are generated onto the GRM outer surface providing an improved hydrophilic behaviour and facilitating the GRM suspension preparation. In addition, the oxygen groups act as anchors for platinum nanoparticles which are subsequently deposited onto the GRM surface through a pulse electrodeposition process.
Membrane electrode assemblies produced with the prepared electrodes are investigated in-situ in a PEM fuel cell test bench.
This collection of mathematical expressions and how they are read aloud in German and English is intended to help engineers and engineering students.
The wireless data logger system “Cor/log® BAN BT” (CL) allows seamless 24/7 monitoring of relevant vital sign parameters. CL covers the entire period of acute point of care inside the hospital and the recovery period, when first mobility is achieved and when the patient is released into an ambulatory or homecare environment. The CL records the relevant vital signs such as ECG, respiration, pulse oximetry with plethysmogram and movement. The vital data collected with the CL data logger is saved on a memory card for further analysis and is simultaneously transmitted in real-time to a telemedicine server via a smartphone or tablet. The smartphone also provides GPS location information. In addition Cor/log View, an Android Application for viewing recorded vital sign data originating from the CL, was developed. CL has also a connector to the generic MedM health cloud. MedM is a generic patient data management system (PDMS) consisting of a cloud portal and a mobile health app. The app runs on Android, iOS and Windows. The app can connects wirelessly to the CL physiologic monitor and stores the vital signs in the cloud.
In the polymer electrolyte membrane fuel cells (PEMFC) state of the art, rare and expensive platinum group metals (PGM) or PGM alloys are used as catalyst material. Reduction of PGMs in PEMFC electrodes is strongly required to reach cost targets for this technology. An optimal catalyst utilization is achieved in case of nano-structured particles supported on carbon material with a large specific surface area. In this study, graphitic material, in form of carbon nanofibers (CNF), is decorated with Pt particles, serving as catalyst material for PEMFC electrodes with low Pt loading. As a novelty, the effect of oxygen plasma treatment of CNFs previously to platinum particle deposition has been studied. Electrodes are investigated in respect of the optimal morphology, microstructure as well as electrochemical properties. Therefore, samples are characterized by means of scanning electron microscopy combined with energy dispersive X-ray analysis, transmission electron microscopy, thermogravimetry, X-ray diffraction as well as X-ray fluorescence analysis. In order to determine the electrochemical active surface area of catalyst particles, cyclic voltammetry has been performed in 0.5 M sulphuric acid. Selected samples have been investigated in a PEMFC test bench according to their polarization behavior.
Carbon Nanofibers (CNF) are considered to be a promising catalyst support material due to their unique characteristics, excellent mechanical, electrical and structural properties, high surface area and nevertheless, good interaction with metallic catalyst particles. The possibility of preparing CNF decorated with platinum by an electrochemical method was tested, using a hexachloroplatinic bath solution. The experiments were carried out with the aid of a Potentiostat/Galvanostat Ivium Technologies Vertex, in a three – electrode cell. The aim of the present work was to determine the electrochemical surface area (ECSA) of the CNF-Pt catalysts in relation to the functionalization treatment of fibers, using an electrochemical method. ECSA for different functionalized CNF-Pt catalysts was determined by cyclic voltammetry in 0.5 M H2SO4 solution. The highest active surface of platinum was obtained for the samples with CNF functionalized by plasma treatment using 80 W for 1800 s. The obtained results correlate very well with the particles size and distribution of platinum, revealed by scanning electron microscopy (SEM) and the quantity of deposited platinum determined by thermo gravimetrical analysis (TGA) respectively. Cyclic voltammetry (CV) has been proven to be a suitable method for estimation of the ECSA of the electrocatalysts.
For this study gas diffusion electrodes (GDE) with low platinum loading are prepared for the application as anode in polymer electrolyte membrane fuel cell (PEMFC) systems based on hydraulic compression. As catalyst support material, carbon nanofibers (CNF) are investigated because of their high specific surface area and high graphitization degree. The electrode preparation is optimized by an economic and environmental friendly pre-treatment process in oxygen plasma. For GDE manufacture an ink containing oxygen plasma activated CNFs as well as hydrophilic polymer is used. After spray coating of this CNF ink on a graphitic substrate, platinum is deposited using the pulse plating technique. Preliminary results showed a considerable improvement of CNF dispersibility as well as an increased amount and an optimized morphology of the deposited platinum. Morphology and microstructure are observed by scanning electron microscopy as well as transmission electron microscopy. Platinum loading is determined by thermogravimetric analysis to be in the range of 0.01 mg cm-2 to 0.017 mg cm-2. Furthermore, MEAs are prepared from these GDEs and testing is performed in a novel modular fuel cell test stack based on hydraulic compression. Technical information about stack design and functions is given in this work.
Platinum nanoparticles electrodeposition on carbon nanofibers (CNF) support has been performed with the purpose to obtain electrodes that can be further used especially in a polymer electrolyte membrane fuel cell (PEMFC). A pretreatment of CNF is required in order to enhance the surface energy, which simultaneously improves handling and wettability as well as interaction with the platinum cations. This step was performed using oxygen plasma functionalization. To produce CNF supported Pt catalysts, an electrochemical method was applied and the deposition parameters were adjusted to obtain nanosized platinum particles with a good distribution onto the graphitic surface. The morphology and structure of the obtained particles were investigated by scanning electron microscopy combined with energy dispersive X-Ray spectroscopy. The amount of deposited platinum was established using thermogravimetrical measurements. Cyclic voltammetry performed in 0.5 M H2SO4 solution was applied for determining the electrochemical surface area (ECSA) of the obtained electrodes.The functionalization degree of the CNF outer surface has a strong influence on the structure, distribution and amount of platinum particles. Moreover, the current densities, which were set for the deposition process influenced not only the particles size but also the platinum amount. Applying an oxygen plasma treatment of 80 W for 1800 s, the necessary degree of surface functionalization is achieved in order to deposit the catalyst particles. The best electrodes were prepared using a current density of 50 mA cm-2 during the deposition process that leads to a homogenous platinum distribution with particles size under 80 nm and ECSA over 6 cm2
In this experimental work polymer electrolyte membrane fuel cell (PEMFC) electrodes are analysed, which are prepared by the use of two sorts of carbon nano fibres (CNF) serving as support material for platinum nano particles. Those CNFs, which are heat treated subsequently to their production, have a higher graphitisation degree than fibres as produced. The improved graphitisation degree leads to higher electrical conductivity, which is favourably for the use in PEMFC electrodes. Samples have been analysed, in order to determine graphitisation degree, electrical conductivity, as well as morphology and loading of the prepared electro catalyst. Membrane electrode assemblies manufactured from prepared electrodes are analysed in-situ in a PEM fuel cell test environment. It has been determined that power output for samples containing CNFs with higher graphitisation degree is increased by about 13.5%.
This work deals with the preparation and investigation of PEM fuel cell electrodes, which are obtained using graphene related material (GRM) serving as catalyst support for platinum nanoparticles. Applied GRM are used for the preparation of suspensions in four distinct mixing ratios. Two sorts of GRM have been investigated: carbon nanofibers (CNF) and graphene oxide (GO). Utilized CNFs provide a superior graphitization degree of about 100%, which leads to both high corrosion resistance and low ohmic resistance in PEM fuel cells.
For electrode preparation a GRM containing layer serving as catalyst support is applied onto a gas diffusion layer (GDL). Prior to GRM suspension and deposition onto a GDL, the graphene structures are functionalized by plasma treatment. Due to this step, an improved hydrophilic behavior for facilitating suspension preparation is achieved. In addition, a subsequent platinum nanoparticle deposition by pulsed electrodeposition process is optimized.
This experimental work deals with the preparation and investigation of PEM fuel cell electrodes, which are obtained using Graphene Related Material (GRM) serving as catalyst support material for platinum nanoparticles. The applied GRM belong to the group of carbon nanofibers and exhibits a helical-ribbon structure with dimensions of 50 nm in diameter and an average length up to a few µm. Furthermore, utilized GRM provide a superior graphitisation degree of about 100 %, which leads to both high corrosion resistance and low ohmic resistance. Material stability plays one of the main roles for long term fuel cell operation, whereby a great electrical catalyst contact combined with high specific surface area yields in high fuel cell performances.
Prior to GRM dispersion and deposition onto a gas diffusion layer, the graphene structures are functionalized by oxygen plasma treatment. Through this step, functional oxygen groups are generated onto the GRM outer surface providing an improved hydrophilic behaviour and facilitating the GRM suspension preparation. In addition, the oxygen groups act as anchors for platinum nanoparticles which are subsequently deposited onto the GRM surface through a pulse electrodeposition process.
Membrane electrode assemblies produced with the prepared electrodes are investigated in-situ in a PEM fuel cell test bench.
Pervertierter Kapitalismus
(2016)
This paper aims to compare cobalt-based (type Stellite 6) and nickel-based self-fluxing alloys (type NiCrBSiMo) regarding both their cavitation erosion resistance and corrosion resistance. The two types of protective layers were thermally sprayed onto a substrate of martensitic stainless steel. In order to improve the layers' characteristics and their metallurgical bonding to the substrate, the Stellite 6 coating was laser remelted, while the NiCrBSiMo coating was treated by flame fusion. The cavitation erosion resistance of the two materials was evaluated by measurements of the mean depth of erosion developed during a testing period of 165 minutes, using a 20 kHz ultrasonic vibrator at a peak-to-peak amplitude of 50 μm. In addition, the corrosion resistance of the layers was assessed by potentiodynamic corrosion tests carried out in H2SO4 + NaCl solution at room temperature, using calomel as reference electrode. In order to highlight the differences regarding the behaviour of the two protective materials, the authors also carried out microstructural investigations of the layers before and after exposure to cavitation and corrosion. The investigations showed that both types of layers can provide improved protection of the martensitic stainless steel substrate against cavitation, whilst the NiCrBSiMo coating additionally confers significantly increased resistance to corrosion.
Optimization of the laser remelting process for HVOF-sprayed Stellite 6 wear resistant coatings
(2016)
Cobalt base alloys are used in all industrial areas due to their excellent wear resistance. Several studies have shown that Stellite 6 coatings are suitable not only for protection against sliding wear, but also in case of exposure to impact loading. In this respect, a possible application is the protection of hydropower plant components affected by cavitation. The main problem in connection with Stellite 6 is the deposition procedure of the protective layers, both welding and thermal spraying techniques requesting special measures in order to prevent the brittleness of the coating. In this study, Stellite 6 layers were HVOF thermally sprayed on a martensitic 13-4 stainless steel substrate, as usually used for hydraulic machinery components. In order to improve the microstructure of the HVOF-sprayed coatings and their adhesion to the substrate, laser remelting was applied, using a TRUMPF Laser type HL 124P LCU and different working parameters. The microstructure of the coatings, obtained for various remelting conditions, was evaluated by light microscopy, showing the optimal value of the pulse power, which provided a homogenous Stellite 6 layer with good adhesion to the substrate.
Interessengerechte Lösung gesucht! Der BGH zu Verlegerbeteiligungen an Ausschüttungen der VG Wort
(2016)
Eigentum verpflichtet
(2016)