Refine
Year of publication
- 2016 (187) (remove)
Document Type
- Article (70)
- Conference Proceeding (30)
- Part of a Book (26)
- Contribution to a Periodical (18)
- Book (17)
- Course Material (11)
- Review (6)
- Report (5)
- Working Paper (2)
- video (1)
- Other (1)
Language
- German (135)
- English (50)
- Multiple languages (1)
- Romanian (1)
Keywords
- Bionik (2)
- Empirische Methoden (2)
- Energiepolitik (2)
- Erneuerbare Energien (2)
- Fachjournalismus (2)
- Gespenstschrecken (2)
- Haftorgan (2)
- Kommunikationswissenschaft (2)
- Rechtswissenschaft (2)
- Wissenschaftliches Arbeiten (2)
- adhesion (2)
- open quantum systems (2)
- stick insects (2)
- carbon nanofibers, platinum electrodeposition, ele ctrochemical surface area (1)
- Anorganische Analyse (1)
- Besondere Ausgleichsregelung (1)
- Betriebswirtschaft (1)
- Bildverarbeitung (1)
- Biomedical monitoring, Hospitals, Electrocardiography, Wireless communication, Patient monitoring, Wireless sensor networks (1)
- Biomimetics (1)
- Branding (1)
- CRM (1)
- Cavitation; Corrosion; Laser remelting; Self-fluxing alloys; Stellite 6 (1)
- Compliance (1)
- Corporate Governance (1)
- Corporate Governance Codex (1)
- Crowdfunding (1)
- Current Pulses (1)
- Data Collection (1)
- Datenanalyse (1)
- Deutscher Aktienindex (1)
- Emissionshandel (1)
- Ethik (1)
- Europe (1)
- Flat-Channel (1)
- Flügelform (1)
- Gehirn & Computer (1)
- Geldpolitik (1)
- Geldschöpfung (1)
- Handelsbilanz (1)
- Hochschuldidaktik (1)
- Hydraulic compression, Carbon Nano Fibers, PEM Fuel Cells, Catalyst utilization (1)
- ICP-Massenspektrometrie (1)
- Implantat (1)
- Journalismus (1)
- Juristisches Studium (1)
- Kapitalverkehrsbilanz (1)
- Kernspintomografie (1)
- Korruption (1)
- Kundenmanagement (1)
- Künstliche Intelligenz (1)
- Launcher (1)
- Mapping (1)
- Maschinenintelligenz (1)
- Mathematische Ausdrücke (1)
- Maus (1)
- Medienforschung (1)
- Menschheitsentwicklung (1)
- Methodology (1)
- Middle-range Theory (1)
- Mikrofotografie (1)
- Mittelstand (1)
- Negativzins (1)
- Ohrwurm (1)
- PEM fuel cell electrocatalysts, Carbon nanofibers, Oxygen plasma activation, Pulsed electroplating. (1)
- PEM fuel cells; electrode preparation; carbon nanofibers; in-situ performance test (1)
- Polymere (1)
- Projektabwicklung (1)
- Redaktion (1)
- Schuldrecht (1)
- Sinusoidal (1)
- Social Innovation (1)
- Spondylodese (1)
- Stellite 6; HVOF-spraying; Laser remelting; Cavitation erosion; Coatings (1)
- Supercomputer (1)
- Thermal Stress (1)
- Vertrag (1)
- Vertragsrecht (1)
- Wachstum (1)
- Wechselkurs (1)
- Wertschöpfungsrechnung (1)
- Wirtschaft (1)
- biomimicry (1)
- carbon nanofibers, platinum electrodeposition, electrocatalysts (1)
- conical intersection (1)
- demagnetization cooling (1)
- didaktische Qualifizierung (1)
- ethics (1)
- expert interviews (1)
- infrared heating panel (1)
- international comparative study (1)
- mathematical expressions (1)
- media accountability (1)
- nonadiabatic dynamics (1)
- nonequilibrium quantum transport (1)
- offene Volkswirtschaft (1)
- role identity (1)
- social innovation (1)
- theorising (1)
- watchblogs (1)
- Änderung (1)
- Überschussliquidität (1)
Institute
- Wirtschaftsrecht (83)
- Informatik und Kommunikation (22)
- Institut für Internetsicherheit (14)
- Westfälisches Institut für Gesundheit (13)
- Westfälisches Energieinstitut (12)
- Strategische Projekte (9)
- Wirtschaft und Informationstechnik Bocholt (8)
- Elektrotechnik und angewandte Naturwissenschaften (6)
- Maschinenbau Bocholt (6)
- Institut für Innovationsforschung und -management (4)
Earwig wings are highly foldable structures that lack internal muscles. The behaviour and shape changes of the wings during flight are yet unknown. We assume that they meet a great structural challenge to control the occurring deformations and prevent the wing from collapsing. At the folding structures especially, the wing could easily yield to the pressure. Detailed microscopy studies reveal adaptions in the structure and material which are not relevant for folding purposes. The wing is parted into two structurally different areas with, for example, a different trend or stiffness of the wing veins. The storage of stiff or more flexible material shows critical areas which undergo great changes or stress during flight. We verified this with high-speed video recordings. These reveal the extent of the occurring deformations and their locations, and support our assumptions. The video recordings reveal a dynamical change of a concave flexion line. In the static unfolded state, this flexion line blocks a folding line, so that the wing stays unfolded. However, during flight it extends and blocks a second critical folding line and prevents the wing from collapsing. With these results, more insight in passive wing control, especially within high foldable structures, is gained.
The conventional quantitative method for the analysis of inorganic elements in polymer matrices is a complex and time consuming process that presents a significant risk for error. Typically, polymers are digested in a microwave oven or other devices under high temperature and pressure for several hours while employing different mixtures of high purity acids. In many cases, particularly when high concentrations of doped elements are present, the digestion is often incomplete and therefore the reproducibility depends strongly on the type of polymer and additives used. A promising alternative technology that allows for the direct analysis of these polymers without digestion is laser ablation ICP-MS. Due to a lack of available reference materials and the presence of matrix dependent effects, a precise calibration cannot be obtained. In order to compensate for the matrix dependent effects the use of internal standardization is necessary. In this study the correlation between the carbon released during the ablation process and the 13C signal detected by ICP-MS and its use as an internal standard are investigated. For this purpose, twenty-one virgin polymer materials are ablated; the released carbon is determined and correlated with the corresponding integrated 13C signal. The correlation resulted in a direct relationship between the ablated carbon and 13C signal demonstrating the potential ability to neglect at least some of the matrix dependent and transport effects which occur during the laser ablation of virgin polymers.