Refine
Document Type
- Conference Proceeding (5)
- Article (4)
It is well-known that protein-modified implant surfaces such as TiO2 show a higher bioconductivity. Fibronectin is a glycoprotein from the extracellular matrix (ECM) with a major role in cell adhesion. It can be applied on titanium oxide surfaces to accelerate implant integration. Not only the surface concentration but also the presentation of the protein plays an important role for the cellular response. We were able to show that TiOX surfaces modified with biotinylated fibronectin adsorbed on a streptavidin-silane self-assembly multilayer system are more effective regarding osteoblast adhesion than surfaces modified with nonspecifically bound fibronectin. The adsorption and conformation behavior of biotinylated and nonbiotinylated (native) fibronectin was studied by surface plasmon resonance (SPR) spectroscopy and atomic force microscopy (AFM). Imaging of the protein modification revealed that fibronectin adopts different conformations on nonmodified compared to streptavidin-modified TiOX surfaces. This conformational change of biotinylated fibronectin on the streptavidin monolayer delivers a fibronectin structure similar to the conformation inside the ECM and therefore explains the higher cell affinity for these surfaces.
Streptavidin-coated TiO2 surfaces are biologically inert: Protein adsorption and osteoblast adhesion
(2012)
Non‐fouling TiO2 surfaces are attractive for a wide range of applications such as biosensors and medical devices, where biologically inert surfaces are needed. Typically, this is achieved by controlled surface modifications which prevent protein adsorption. For example, polyethylene glycol (PEG) or PEG‐derived polymers have been widely applied to render TiO2 surfaces biologically inert. These surfaces have been further modified in order to achieve specific bio‐activation. Therefore, there have been efforts to specifically functionalize TiO2 surfaces with polymers with embedded biotin motives, which can be used to couple streptavidin for further functionalization. As an alternative, here a streptavidin layer was immobilized by self‐assembly directly on a biotinylated TiO2 surface, thus forming an anti‐adhesive matrix, which can be selectively bio‐activated. The anti‐adhesive properties of these substrates were analyzed by studying the interaction of the surface coating with fibronectin, lysozym, and osteoblast cells using surface plasmon resonance spectroscopy, atomic force microscopy, and light microscopy. In contrast to non‐modified TiO2 surfaces, streptavidin‐coated TiO2 surfaces led to a very biologically inert substrate, making this type of surface coating a promising alternative to polymer coatings of TiO2 surfaces.