The diffusion of hydrogen adsorbed inside layered MoS2 crystals has been studied by means of quasi- elastic neutron scattering, neutron spin-echo spectroscopy, nuclear reaction analysis, and X-ray photoelectron spectroscopy. The neutron time-of-flight and neutron spin-echo measurements demonstrate fast diffusion of hydrogen molecules parallel to the basal planes of the two dimensional crystal planes. At room temperature and above, this intra-layer diffusion is of a similar speed to the surface diffusion that has been observed in earlier studies for hydrogen atoms on Pt surfaces. A significantly slower hydrogen diffusion was observed perpendicular to the basal planes using nuclear reaction analysis.
Hydrogen concentrations in ZnO single crystals exposing different surfaces have been determined to be in the range of (0.02–0.04) at.% with an error of ±0.01 at.% using nuclear reaction analysis. In the subsurface region, the hydrogen concentration has been determined to be higher by up to a factor of 10. In contrast to the hydrogen in the bulk, part of the subsurface hydrogen is less strongly bound, can be removed by heating to 550°C, and reaccommodated by loading with atomic hydrogen. By exposing the ZnO(10-10) surface to water above room temperature and to atomic hydrogen, respectively, hydroxylation with the same coverage of hydrogen is observed.