Refine
Document Type
- Article (4)
- Contribution to a Periodical (2)
- Part of a Book (1)
- Conference Proceeding (1)
Keywords
- Biomechanics (1)
- Bionik (1)
- Deep Learning (1)
- Normung (1)
- bioinspired (1)
- biomimetic materials (1)
- biomimicry (1)
- innovation (1)
- product development (1)
- solution finding (1)
In diesem Beitrag soll deutlich gemacht werden, an welchen Stellen eines Entwicklungsprozesses Bionik die Entwicklungsarbeit in einem Unternehmen stärken kann. Es werden die Arbeitsabschnitte benannt, in denen der Einsatz von Bionik als besonders erfolgversprechend erachtet wird, und was bei der Durchführung beachtet werden sollte. Darauf aufbauend werden konkrete Methoden benannt, die spezifisch für die Bionik sind, und erläutert, in welchen Arbeitsabschnitten ein Einsatz möglich ist.
Fruits (follicles) of Hakea salicifolia and Hakea sericea (Proteaceae) are characterised by pronounced lignification and open via a ventral suture and the dorsal side. The opening along both sides is unique within the Proteaceae. Both serotinous species are obligate seeders, whose spreading benefits from bush fire events. The different tissues and the course of the vascular bundles must allow the opening mechanism. While their 2D-arrangements are known to some extent from light-microscopy images of cross-sections, this work presents their three-dimensional structures and discusses their contribution to the opening of Hakea fruits. For this purpose, 3D greyscale images, reconstructed from µCT-projection data of both fruits are segmented, assisted by a deep learning algorithm (AI algorithm). 3D renderings from these segmentations show strongly interconnected vascular bundles that build a double-dome shaped network in each valve of H. salicifolia and a dome shaped honeycomb-structure in each valve of H. sericea. However, the vascular bundles of both species show no interconnection between the two lateral valves of the fruit but leave gaps for predetermined fracture tissues on the ventral and dorsal side. The opening of the fruits after a fire or after separation from the mother plant can be explained by the anisotropic shrinkage in the two valves of the fruit.
Mit Ausgabedatum Juli 2018 wurde die Norm DIN ISO 18457 "Bionik - Bionische Werkstoffe, Strukturen und Bestandteile (ISO 18457:2016) veröffentlicht. Aus diesem Anlass blicken wir auf die bisherigen Aktivitäten zurück, die zur Veröffentlichung von insgesamt drei grundlegenden Normen im Bereich der Bionik geführt haben.
Biomimetics is the interdisciplinary co-operation of various scientific disciplines and fields of innovation, and it aims to solve practical problems using biological models. Biomimetic research and its fields of application are manifold, and the community is made up of a wide range of disciplines, from biologists and engineers to designers. Guidelines and standards can build a common ground for understanding of the field, communication across disciplines, present and future projects and implementation of biomimetic knowledge. Since 2015, three international standards have been published and defined terms and definitions, as well as specific applications. The scientific literature and patents in several databases were searched for citations of the published standards. Standards or technical guidelines on biomimetics are represented both in the scientific literature and in patents. However, taking into account the increasing number of publications in biomimetics, the number of publications (52) citing the international standards is low. This shows that the perception of technical rules is still underrepresented in the academic field. Greater awareness and acceptance of the importance of standards for quality assurance even in the academic environment is discussed, and active participation in the corresponding International Organization for Standardization committee on biomimetics is asked for.
Biomimetics is a well-known approach for technical innovation. However, most of its influence remains in the academic field. One option for increasing its application in the practice of technical design is to enhance the use of the biomimetic process with a step-by-step standard, building a bridge to common engineering procedures. This article presents the endeavor of an interdisciplinary expert panel from the fields of biology, engineering science, and industry to develop a standard that links biomimetics to the classical processes of product development and engineering design. This new standard, VDI 6220 Part 2, proposes a process description that is compatible and connectable to classical approaches in engineering design. The standard encompasses both the solution-based and the problem-driven process of biomimetics. It is intended to be used in any product development process for more biomimetic applications in the future.