Refine
Keywords
The present paper presents one- and two-step approaches for electrochemical Pt and Ir deposition on a porous Ti-substrate to obtain a bifunctional oxygen electrode. Surface pre-treatment of the fiber-based Ti-substrate with oxalic acid provides an alternative to plasma treatment for partially stripping TiO2 from the electrode surface and roughening the topography. Electrochemical catalyst deposition performed directly onto the pretreated Ti-substrates bypasses unnecessary preparation and processing of catalyst support structures. A single Pt constant potential deposition (CPD), directly followed by pulsed electrodeposition (PED), created nanosized noble agglomerates. Subsequently, Ir was deposited via PED onto the Pt sub-structure to obtain a successively deposited PtIr catalyst layer. For the co-deposition of PtIr, a binary PtIr-alloy electrolyte was used applying PED. Micrographically, areal micro- and nano-scaled Pt sub-structure were observed, supplemented by homogenously distributed, nanosized Ir agglomerates for the successive PtIr deposition. In contrast, the PtIr co-deposition led to spherical, nanosized PtIr agglomerates. The electrochemical ORR and OER activity showed increased hydrogen desorption peaks for the Pt-deposited substrate, as well as broadening and flattening of the hydrogen desorption peaks for PtIr deposited substrates. The anodic kinetic parameters for the prepared electrodes were found to be higher than those of a polished Ir-disc.
Since high costs restrict the wide-range implementation of green hydrogen production capacities based on proton exchange membrane water electrolysis (PEMWE), efforts on cost reduced components need to be made. Beside the necessary noble metal catalyst, the membrane material is a main cost driver. In this work, a novel glass fibre reinforced PFSA/ssPS composite membrane is investigated as an alternative to widely used Nafion®. These membranes are processed into membrane-electrode-assemblies (MEAs) in conjunction with catalyst-coated substrates, prepared via electrochemical catalyst deposition. This approach is promising to reduce costs due to less expensive raw materials and due to increasing catalyst utilization by graded catalyst layers. Characterisation of the components and entire MEAs was performed ex-situ as well as in-situ via PEMWE operation.
This study presents the correlation between electrolyte pH, surface morphology, chemical speciation and electro-catalytic oxygen evolution activity of additive-free electrodeposited NiFe catalysts for application in anion exchange membrane water electrolysis. Spherical morphologies were identified at pH 0, shifting towards honey-combed structures at pH 4 with increasing surface area, especially at pH 3. Further, the electrolyte pH was found to influence the NiFe composition and electro-catalytic activity. Enhanced OER activity was noted at pH 2 with overpotentials of 214 mV at 10 mA cm−2 and 267 mV at 100 mA cm−2. The results reveal that the electrolyte pH is a parameter not only influencing the morphology but also tailoring the surface area, Fe oxide and Fe hydroxide composition and consequently the catalytic activity. Further, the outcomes highlight the electrolyte pH as a key process parameter that should be adjusted according to the application, and may substitute the addition of electrolyte-additives, proposing a simpler method for improving catalyst electrodeposition.
Abstract
Femtosecond laser-induced nano structuring offers a novel approach to enhance the performance of porous transport layers (PTLs) in anion-exchange membrane water electrolysis. By applying ultrashort laser pulses to nickel felts, distinct surface morphologies were generated, including high-spatial-frequency laser-induced periodic surface structures (HSFL-LIPSS), irregular ablated surfaces, and hybrid structures. Surface area analysis revealed increases of up to 4-fold for LIPSS, 6-fold for hybrid structures (LIPSS+Ablation), and 9-fold for ablated surfaces compared to untreated fibers. Electrochemical testing showed reduced overpotentials for laser-treated samples, comparable to state-of-the-art electrodes despite the absence of catalyst layers. Overpotentials could be reduced by up to 6.5 % at 10 mA cm−2 and by up to 9.6 % at 100 mA cm−2 compared to the unprocessed felt. Notably, ablated structures, with the highest surface areas, exhibited microcavities that may entrap oxygen bubbles, limiting active site and reaction rates. The LIPSS structures demonstrated the lowest activation losses and highest current density (1.32 A cm⁻² at 2.0 V) due to their periodic morphology and enhanced electrolyte flow, representing a 17 % improvement at 2.0 V compared to the untreated felts. Moreover, Tafel slopes down to 66 mV dec−1 denote a performant kinetic while oxidation charge measurements revealed pronounced peaks for laser-treated samples, with ablated surfaces achieving the highest charge of 16.76 ± 1.64 C cm⁻². Chronopotentiometry revealed the LIPSS structures showing the highest resistance to degradation among the structured samples.
These findings suggest femtosecond laser nano structuring as a promising method to improve PTL performance. Further application of catalyst layers could amplify the electrochemical efficiency of these advanced materials.
Abstract
The study introduces flexible and scalable manufacturing approach for electrodes utilizing boron-doped silicon as conductive support for iridium nanoparticles, addressing the challenges of cost and scarcity associated with noble catalysts for oxygen evolution reaction (OER). Colloidal Ir nanoparticles are synthesized via pulsed-laser ablation (≈4–7 nm) and decorated on B-doped Si (≈100 nm) through electrostatic adsorption. Titanium substrates are ultrasonically sprayed with Si:B – Ir and Ir nanoparticles with very low iridium loading of 12 wt.%. Crystalline Ir phases (Ir(111), Ir(200)) are observed and known to enhance the OER mechanism. Additionally, atom probe tomography confirms that the Si support particles contained 0.03-0.5 at.% of boron throughout the entire particle, while electrical permittivity and through-plane measurements reveal a positive impact of B-doped Si on the electrical conductivity of the nanocatalysts and of the ultralow-loaded catalyst coated Ti substrates (0.12 mgIr cm−2), respectively. Rotating disk electrode results show pronounced oxidation peaks for decorated Ir nanoparticles. The Si:B-Ir 4 nm catalyst exhibits the highest turnover frequency (2.62 s−1) and a competitive electrochemical surface area (25 m2 gIr−1) compared to Si:B-Ir 7 nm (0.96 s−1; 37.5 m2 gIr−1) and Ir black (0.24 s−1; 5 m2 gIr−1). The overall analysis of the parameters highlights a performant catalytic efficiency, through balancing activity and reaction kinetics effectively.