Refine
Document Type
- Article (10)
- Conference Proceeding (9)
Keywords
- carbon nanofibers, platinum electrodeposition, ele ctrochemical surface area (1)
- Hydraulic compression, Carbon Nano Fibers, PEM Fuel Cells, Catalyst utilization (1)
- Hydrogen evolution reaction (1)
- NiCrBSi coatings; flame spraying; induction remelting; wear resistance (1)
- PEM fuel cell electrocatalysts, Carbon nanofibers, Oxygen plasma activation, Pulsed electroplating. (1)
- PEM water electrolysis (1)
- PtCoMn (1)
- Ternary alloy catalyst preparation (1)
- carbon nanofibers, platinum electrodeposition, electrocatalysts (1)
- education; skills; competences; pandemic; online or face-to-face (1)
Institute
A systematic method for obtaining a novel electrode structure based on PtCoMn ternary alloy catalyst supported on graphitic carbon nanofibers (CNF) for hydrogen evolution reaction (HER) in acidic media is proposed. Ternary alloy nanoparticles (Co0.6Mn0.4 Pt), with a mean crystallite diameter under 10 nm, were electrodeposited onto a graphitic support material using a two-step pulsed deposition technique. Initially, a surface functionalisation of the carbon nanofibers is performed with the aid of oxygen plasma. Subsequently, a short galvanostatic pulse electrodeposition technique is applied. It has been demonstrated that, if pulsing current is employed, compositionally controlled PtCoMn catalysts can be achieved. Variations of metal concentration ratios in the electrolyte and main deposition parameters, such as current density and pulse shape, led to electrodes with relevant catalytic activity towards HER. The samples were further characterised using several physico-chemical methods to reveal their morphology, structure, chemical and electrochemical properties. X-ray diffraction confirms the PtCoMn alloy formation on the graphitic support and energy dispersive X-ray spectroscopy highlights the presence of the three metallic components from the alloy structure. The preliminary tests regarding the electrocatalytic activity of the developed electrodes display promising results compared to commercial Pt/C catalysts. The PtCoMn/CNF electrode exhibits a decrease in hydrogen evolution overpotential of about 250 mV at 40 mA cm−2 in acidic solution (0.5 M H2SO4) when compared to similar platinum based electrodes (Pt/CNF) and a Tafel slope of around 120 mV dec−1, indicating that HER takes place under the Volmer-Heyrovsky mechanism.
Even though we live in a period when the word digitization is prevalent in many social areas, the COVID-19 pandemic has divided mankind into two main categories: some people have seen this crisis as an opportunity to move the activities online and, furthermore, to accelerate digitization in as many areas as possible, while others have been reluctant, keeping their preferences for face-to-face activities. The current work presents the results of an analysis on 249 students from 11 engineering faculties. The study aims to identify the impact of the COVID-19 pandemic on students’ educational experiences when switching from face-to-face to online education during a public health emergency or COVID 19-related state of alert. The overall conclusion was that, although the pandemic has brought adverse consequences on the health and life quality of many people, the challenges that humankind has been subjected to have led to personal and professional development and have opened up new perspectives for carrying out the everyday activities.
Without proper post-processing (often using flame, furnace, laser remelting, and induction) or reinforcements’ addition, Ni-based flame-sprayed coatings generally manifest moderate adhesion to the substrate, high porosity, unmelted particles, undesirable oxides, or weak wear resistance and mechanical properties. The current research aimed to investigate the addition of ZrO2 as reinforcement to the self-fluxing alloy coatings. Mechanically mixed NiCrBSi-ZrO2 powders were thermally sprayed onto an industrially relevant high-grade steel. After thermal spraying, the samples were differently post-processed with a flame gun and with a vacuum furnace, respectively. Scanning electron microscopy showed a porosity reduction for the vacuum-heat-treated samples compared to that of the flame-post-processed ones. X-ray diffraction measurements showed differences in the main peaks of the patterns for the thermal processed samples compared to the as-sprayed ones, these having a direct influence on the mechanical behavior of the coatings. Although a slight microhardness decrease was observed in the case of vacuum-remelted samples, the overall low porosity and the phase differences helped the coating to perform better during wear-resistance testing, realized using a ball-on-disk arrangement, compared to the as-sprayed reference samples.
Ni-based alloys are among the materials of choice in developing high-quality coatings for ambient and high temperature applications that require protection against intense wear and corrosion. The current study aims to develop and characterize NiCrBSi coatings with high wear resistance and improved adhesion to the substrate. Starting with nickel-based feedstock powders, thermally sprayed coatings were initially fabricated. Prior to deposition, the powders were characterized in terms of microstructure, particle size, chemical composition, flowability, and density. For comparison, three types of powders with different chemical compositions and characteristics were deposited onto a 1.7227 tempered steel substrate using oxyacetylene flame spraying, and subsequently, the coatings were inductively remelted. Ball-on-disc sliding wear testing was chosen to investigate the tribological properties of both the as-sprayed and induction-remelted coatings. The results reveal that, in the case of as-sprayed coatings, the main wear mechanisms were abrasive, independent of powder chemical composition, and correlated with intense wear losses due to the poor intersplat cohesion typical of flame-sprayed coatings. The remelting treatment improved the performance of the coatings in terms of wear compared to that of the as-sprayed ones, and the density and lower porosity achieved during the induction post-treatment had a significant positive role in this behavior.