Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Keywords
- Catalysis (1)
- Electrodeposition (1)
- Gas Diffusion Electrode (1)
- ORR OER (1)
- fuel cells (1)
- polymer electrolyte membrane (1)
The present paper presents one- and two-step approaches for electrochemical Pt and Ir deposition on a porous Ti-substrate to obtain a bifunctional oxygen electrode. Surface pre-treatment of the fiber-based Ti-substrate with oxalic acid provides an alternative to plasma treatment for partially stripping TiO2 from the electrode surface and roughening the topography. Electrochemical catalyst deposition performed directly onto the pretreated Ti-substrates bypasses unnecessary preparation and processing of catalyst support structures. A single Pt constant potential deposition (CPD), directly followed by pulsed electrodeposition (PED), created nanosized noble agglomerates. Subsequently, Ir was deposited via PED onto the Pt sub-structure to obtain a successively deposited PtIr catalyst layer. For the co-deposition of PtIr, a binary PtIr-alloy electrolyte was used applying PED. Micrographically, areal micro- and nano-scaled Pt sub-structure were observed, supplemented by homogenously distributed, nanosized Ir agglomerates for the successive PtIr deposition. In contrast, the PtIr co-deposition led to spherical, nanosized PtIr agglomerates. The electrochemical ORR and OER activity showed increased hydrogen desorption peaks for the Pt-deposited substrate, as well as broadening and flattening of the hydrogen desorption peaks for PtIr deposited substrates. The anodic kinetic parameters for the prepared electrodes were found to be higher than those of a polished Ir-disc.
The energy transition towards renewable energies for the overall energy supply (electricity, heat, mobility, etc.) is already well advanced and the further expansion is planned. The volatility of renewable energies is being addressed by the hydrogen technology. However, there is still a need for optimization of the cost-efficient reconversion of stored energy in the form of hydrogen, e.g. in applications for decarbonization of the power grid or of the mobility sector. For instance, the cost of an automotive low-temperature polymer electrolyte membrane fuel cell (PEMFC) must be lowered by reducing the platinum loading and the lifetime must be further improved to achieve the competitiveness of this technology.
The aim of the present thesis was to develop membrane electrode assemblies (MEAs) with ultra-low platinum loading, high performance and increased lifetime for the use in PEMFCs. They are fabricated by an innovative MEA preparation process based on the pulse electrodeposition of platinum (Pt) using carbon nanofibers (CNFs) as a catalyst support with enhanced resistance to carbon oxidation reaction.
The design of the MEA preparation process and the development of ultra-low Pt-loaded anodes and cathodes was the starting point of this thesis. It was found that the Pt/CNF catalyst used on the anode side had better characteristics than a commercial Pt/C catalyst, since the same power output of 0.525 W cm-2 was obtained with 10 .....