This report gives a brief overview to the state of the art of PEM fuel cell technology and a description of a newly developed fuel cell stack concept. One main research activity at the Westphalian Energy Institute of the Westphalian University of Applied Sciences is the development of PEM fuel cells, for which a range of different materials have been investigated for fuel cell pole plate construction. Whereas graphite is a material which has suitable properties concerning conductivity as well as manufacturing e.g. for milling, stainless steel foils are suitable for economical hydroforming processes. However, with steel coating is necessary to increase corrosion resistance as well as electrical conductivity. A new fuel cell stack design is currently under development using separated single fuel cells with hydraulic cell compression. The advantages of this stack concept are modularity, effective heat exchanging and constant, uniform cell compression which are further described in this work.
In this experimental work we present a novel electrolyzer system for the production of hydrogen and oxygen at high pressure levels without an additional mechanical compressor. Due to its control strategies, the operation conditions for this electrolyzer can be kept optimal for each load situation of the system. Furthermore, the novel system design allows for dynamic long-term operation as well as for easy maintainability. Therefore, the device meets the requirements for prospective power-to-gas applications, especially, in order to store excess energy from renewable sources. A laboratory scale device has been developed and high-pressure operation was validated. We also studied the long-term stability of the system by applying dynamic load cycles with load changes every 30 sec. After 80 h of operation the used membrane electrode assembly (MEA) was investigated by means of SEM, EDX and XRD analysis.
The technology of polymer electrolyte membrane (PEM) electrolysis provides an efficient way to produce hydrogen. In combination with renewable energy sources, it promises to be one of the key factors towards a carbon-free energy infrastructure in the future. Today, PEM electrolyzers with a power consumption higher than 1 MW and a gas output pressure of 30 bar (or even higher) are already commercially available. Nevertheless, fundamental research and development for an improved efficiency is far from being finally accomplished, and mostly takes place on a laboratory scale. Upscaling the laboratory prototypes to an industrial size usually cannot be achieved without facing further problems and/or losing efficiency. With our novel system design based on hydraulic cell compression, a lot of the commonly occurring problems like inhomogeneous temperature and current distribution can be avoided. In this study we present first results of an upscaling by a factor of 30 in active cell area.
In this study, a novel design concept for PEMFC (polymer electrolytemembrane fuel cell) stacks is presented with singlecells inserted in pockets surrounded by a hydraulic medium. Thehydraulic pressure introduces necessary compression forces to themembrane electrode assembly of each cell within a stack. Moreover, homogeneous cell cooling is achieved by this medium. First,prototypes presented in this work indicate that, upscaling of cells for the novelstack design is possible without significantperformancelosses. Due to its modularity and scalability, this stackdesign meets the requirements for large PEMFC units.
Im Rahmen der Energiewende ist eine Erweiterung der in das Verbund-netz integrierten Energiespeicher notwendig, um zukünftig die heute gewohnte Versorgungssicherheit trotz eines sehr hohen Anteils volatiler regenerativer Energieerzeugungsanlagen zu ermöglichen. Eine geeignete elektrochemische Methode zur umweltfreundlichen Zwischenspeicherung großer Energiemengen stellt die Wasserelektrolyse mit bedarfsorientierter Rückverstromung dar. Dabei können die dynamischen Einspeise- und Laständerungen im elektrischen Verbundnetz im besonderen Maße von Elektrolyseur- und Brennstoffzellen-systemen auf Basis von Polymer-Elektrolyt-Membranen (PEM) aufgefangen werden.
Bestehende PEM-Systeme sind vor allem in ihrer konstruktiven Zellgröße und ihrer maximalen Leistung bei der Wasserstoffproduktion bzw. der Stromerzeugung stark begrenzt. Vor allem inhomogene Verpressungen großflächiger planarer Zellen in einem klassischen, mechanisch verspannten Stack führen zu hohen Leistungseinbußen. Zudem ergeben sich bei kleinen Stacks aufgrund der geringen Zellspannung ungünstige Wandlungsverhältnisse zwischen Strom und Spannung für eine vor- bzw. nachgeschaltete Leistungselektronik. Ein neuartiges Stackkonzept mit segmentierten Polplatten bietet eine konstruktive Lösung für das Problem größerer aktiver Zellflächen und leistet einen Beitrag zur Entwicklung industriell einsetzbarer Hochdruckelektrolyseure und Brennstoffzellen.
An energy economy with high share of renewable but volatile energy sources is dependent on storage strategies in order to ensure sufficient energy delivery in periods of e.g. low wind and/or low solar radiation. Hydrogen as environmental friendly energy carrier is thought to be an appropriate solution for large scale energy storage. In 2011 the NOW (national organisation for hydrogen in Germany) calculated the demand for hydrogen energy systems as positive (0.8 GW to 5.25 GW) and negative supply for varying power demand (0.68 to 4.3 GW) for the German energy economy in 2025. Due to its dynamic behaviour on load changes polymer electrolyte membrane fuel cells (PEMFC) as well as water electrolyser systems (PEMEL) can play a significant role for large scale hydrogen based storage systems. In this work a novel design concept for modular fuel cell and electrolyser stacks is presented with single cells in pockets surrounded by a hydraulic medium. This hydraulic medium introduces necessary compression forces on the membrane electrode assembly (MEA) of each cell within a stack. Furthermore, ideal stack cooling is achieved by this medium. Due to its modularity and scalability the modular stack design with hydraulic compression meets the requirements for large PEMFC as well as PEMEL units. Small scale prototypes presented in this work illustrate the potential of this design concept.
Für einen Energiesektor, der zukünftig im hohen Maße auf erneuerbaren Quellen beruht, sind Energiespeicher unverzichtbar, um die heute gewohnte Versorgungssicherheit auch in Zeiten geringer Einspeisung aus Wasser, PV- und/oder Windkraftanlagen garantieren zu können. Da konventionelle Speichertechnologien wie beispielsweise Pumpspeicherkraftwerke durch fehlende mögliche Standorte in Deutschland nicht weiter ausgebaut werden, sind Alternativen notwendig. Es ist Konsens, hierfür emissionsarme Strategien zu entwickeln, um die gesetzten Ziele zur Reduktion von CO2 Emissionen zu erreichen. Neben Batterien, die vorzugsweise für Kurzzeitspeicher einzusetzen sind, bietet sich Wasserstoff als umweltfreundlicher Sekundärenergieträger an, der in großen Mengen gespeichert und in Brennstoffzellen mit hohem Wirkungsgrad emissionsfrei in elektrische Energie umgewandelt werden kann. Da elementarer Wasserstoff nicht natürlich vorkommt, ist dieser zuvor zu generieren. Überschüsse aus regenerativen Energiequellen können hierfür ideal genutzt werden. In diesem Beitrag wird ein aussichtsreiches Konzept für einen modularen Hochdruckelektrolyseur vorgestellt, welcher erlaubt, Wasserstoff bei einem hohen Ausgangsdruck bereitzustellen. Durch den prinzipiellen Aufbau, ist ein beliebiges Druckniveau am Ausgang nur von der mechanischen Stabilität der verwendeten Bauteile abhängig. Hierdurch ist es möglich, Wasserstoff direkt in einen Druckgasspeicher oder eine Pipeline zu produzieren, ohne einen zusätzlichen Verdichter nutzen zu müssen. Dies resultiert in signifikanten Kosteneinsparungen und verbessert den Systemwirkungsgrad zukünftiger Anlagen entscheidend.