Refine
Document Type
- video (4)
- Conference Proceeding (3)
Keywords
- Flugkörper (4)
- Robotik (4)
- UAV (4)
- DRZ (1)
- Deutsches Rettungsrobotik-Zentrum (1)
- SLAM (1)
This technical report is about the mission and the experience gained during the reconnaissance of an industrial hall with hazardous substances after a major fire in Berlin. During this operation, only UAVs and cameras were used to obtain information about the site and the building. First, a geo-referenced 3D model of the building was created in order to plan the entry into the hall. Subsequently, the UAVs were used to fly in the heavily damaged interior and take pictures from inside of the hall. A 360° camera mounted under the UAV was used to collect images of the surrounding area especially from sections that were difficult to fly into. Since the collected data set contained similar images as well as blurred images, it was cleaned from non-optimal images using visual SLAM, bundle adjustment and blur detection so that a 3D model and overviews could be calculated. It was shown that the emergency services were not able to extract the necessary information from the 3D model. Therefore, an interactive panorama viewer with links to other 360° images was implemented where the links to the other images depends on the semi dense point cloud and located camera positions of the visual SLAM algorithm so that the emergency forces could view the surroundings.
This technical report is about the architecture and integration of very small commercial UAVs (< 40 cm diagonal) in indoor Search and Rescue missions. One UAV is manually controlled by only one single human operator delivering live video streams and image series for later 3D scene modelling and inspection. In order to assist the operator who has to simultaneously observe the environment and navigate through it we use multiple deep neural networks to provide guided autonomy, automatic object detection and classification and local 3D scene modelling. Our methods help to reduce the cognitive load of the operator. We describe a framework for quick integration of new methods from the field of Deep Learning, enabling for rapid evaluation in real scenarios, including the interaction of methods.
Durch Panoramen in Kombination mit dem ORB-SLAM ist ein schnelles Tracking möglich, liefert jedoch ausschließlich spärliche Daten. Durch die Kombination mit einem neuronalen Netz soll der SLAM Algorithmus zu einem RGBD-SLAM erweitert werden, um ein besseres Tracking und eine dichtere Punktwolke zu gewährleisten.
In this paper, we present a method for detecting objects of interest, including cars, humans, and fire, in aerial images captured by unmanned aerial vehicles (UAVs) usually during vegetation fires. To achieve this, we use artificial neural networks and create a dataset for supervised learning. We accomplish the assisted labeling of the dataset through the implementation of an object detection pipeline that combines classic image processing techniques with pretrained neural networks. In addition, we develop a data augmentation pipeline to augment the dataset with utomatically labeled images. Finally, we evaluate the performance of different neural networks.