Refine
Keywords
In this study, the characteristics of HVOF sprayed WC/Co-Cr and WC/Cr3C2/Ni coatings were investigated in correlation with the variation of the powder feed rate. For this purpose, the mass flow was adjusted to four different levels. The other process parameters were all kept constant. The morphological and mechanical properties as well as the electrochemical corrosion behaviour were investigated and associated with the achieved microstructure.
Both scanning electron microscopy and confocal laser scanning microscopical images of the cross sections demonstrated a good correlation between the selected powder feed rate and the degree of internal porosity produced, which can be attributed to the deposition process. The coatings which fulfilled the requirements of the pre-qualification step were selected for further hardness measurements, tribological tests and electrochemical corrosion measurements in a 3.5 wt% NaCl aqueous solution.
It was found that the powder feed rate strongly influenced the characteristics of the HVOF-sprayed cermet coatings. The tendency to crack formation, especially at the interface coating/substrate, was lower for the samples coated with a lower mass flow rate. These studies have shown that the applied powder feed rates had an important influence on the coatings microstructure and implicitly on the sliding wear behavior respectively on the electrochemical corrosion resistance of the investigated cermet coatings.
Abstract
Considering the significant health risks posed by hard chrome plating during its application, thermally sprayed Cr3C2-NiCr cermet coatings represent a suitable alternative. Incorporating hexagonal boron nitride (hBN) as a dry lubricant into the feedstock powder can further enhance wear resistance and thermal conductivity, crucial for preventing premature failure caused by inadequate lubrication. In this study, the mass fraction of hBN was varied between 0 and 15 wt.% to assess its influence on the tribological performance of the coatings using pin-on-disk tests. The coating’s hardness was measured via the Vickers method, and its cracking tendency at the coating/substrate interface was evaluated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to analyze the microstructure and phase composition, while thermal diffusivity was determined using the laser flash method. The findings revealed that the inclusion of hBN, at concentrations of up to 10 wt.%, leads to an improvement in thermal diffusivity and a reduction in the coefficient of friction. However, exceeding this threshold leads to a decrease in hardness and increased crack formation tendency, highlighting the trade-off between frictional and mechanical properties.