Refine
Document Type
- Article (6)
- Conference Proceeding (3)
In this research computer tomography (CT) iterative reconstruction (IR) algorithms are investigated, specifically the impact of their statistical and model-based strength on image quality in low-dose lung screening CT protocols in comparison to filtered back projection (FBP). It has been probed whether statistical, model-based IR in conjunction with low-dose, and ultra-low-dose protocols are suitable for lungcancer screening. To this end, artificial lung nodules shaped as spheres and spicules made from material with calibrated Hounsfield units (HU) were attached on marked positions in the lung structure of an anthropomorphic phantom. Nodule positions were selected by distinguished radiologists. The phantom with nodules was scanned on a CT Scanner using standard high contrast (SHC), low-dose (LD) and ultra low-dose (ULD) protocol. For reconstruction FBP and the IR algorithm ADMIRE at three different …
Cardiac and liver computed tomography (CT) perfusion has not been routinely implemented in the clinic and requires high radiation doses. The purpose of this study is to examine the radiation exposure and technical settings for cardiac and liver CT perfusion scans at different CT scanners. Two cardiac and three liver CT perfusion protocols were examined with the N1 LUNGMAN phantom at three multi-slice CT scanners: a single-source (I) and second- (II) and third-generation (III) dual-source CT scanners. Radiation doses were reported for the CT dose index (CTDIvol) and dose–length product (DLP) and a standardised DLP (DLP10cm) for cardiac and liver perfusion. The effective dose (ED10cm) for a standardised scan length of 10 cm was estimated using conversion factors based on the International Commission on Radiological Protection (ICRP) 110 phantoms and tissue-weighting factors from ICRP 103. The proposed total lifetime attributable risk of developing cancer was determined as a function of organ, age and sex for adults. Radiation exposure for CTDIvol, DLP/DLP10 cm and ED10 cm during CT perfusion was distributed as follows: for cardiac perfusion (II) 144 mGy, 1036 mGy·cm/1440 mGy·cm and 39 mSv, and (III) 28 mGy, 295 mGy·cm/279 mGy·cm and 8 mSv; for liver perfusion (I) 225 mGy, 3360 mGy·cm/2249 mGy·cm and 54 mSv, (II) 94 mGy, 1451 mGy·cm/937 mGy·cm and 22 mSv, and (III) 74 mGy, 1096 mGy·cm/739 mGy·cm and 18 mSv. The third-generation dual-source CT scanner applied the lowest doses. Proposed total lifetime attributable risk increased with decreasing age. Even though CT perfusion is a high-dose examination, we observed that new-generation CT scanners could achieve lower doses. There is a strong impact of organ, age and sex on lifetime attributable risk. Further investigations of the feasibility of these perfusion scans are required for clinical implementation.
Background: By reviewing image quality and diagnostic perception, the suitability of a statistical model-based iterative reconstruction algorithm in conjunction with low-dose computed tomography for lung cancer screening is investigated.
Methods: Artificial lung nodules shaped as spheres and spiculated spheres made from material with calibrated Hounsfield units were attached on marked positions in the lung structure of anthropomorphic phantoms. The phantoms were scanned using standard high contrast, and two low-dose computed tomography protocols: low-dose and ultra-low-dose. For the reconstruction, the filtered back projection and the iterative reconstruction algorithm ADMIRE at different strength levels (S1–S5) and the kernels Bl57, Br32, Br69 were used. Expert radiologists assessed image quality by performing 4-field-ranking tests and reading all image series to examine the aptitude for the detectability of lung nodules. Signal-to-noise ratio was investigated as objective image quality parameter.
Results: In ranking tests for lung foci detection expert radiologists prefer medium to high iterative reconstruction strength levels. For the standard clinical kernel Bl57 and varying phantom diameter, a noticeable preference for S4 was detected. Experienced radiologists graded filtered back projection reconstructed images with the highest perceptibility. Less experienced readers assessed filtered back projection and iterative reconstruction equally with the highest grades for the Bl57 kernel. Independently of the dose protocol, the signal-to-noise ratio increases with the iterative reconstruction strength level, specifically for Br69 and Bl57.
Conclusions: Subjective image perception does not significantly correlate with the experience of the radiologist, which presumably mirrors reader’s training and accustomed reading adjustments. Regarding signal-to-noise ratio, iterative reconstruction outperforms filtered back projection for spheres and spiculated spheres. Iterative reconstruction matters. It promises to be an alternative to filtered back projection allowing for lung-cancer screening at markedly decreased radiation exposure but comparable or even improved image quality.
The aim of this phantom study is to examine radiation doses of dual- and single-energy computed tomography (DECT and SECT) in the chest and upper abdomen for three different multi-slice CT scanners. A total of 34 CT protocols were examined with the phantom N1 LUNGMAN. Four different CT examination types of different anatomic regions were performed both in single- and dual-energy technique: chest, aorta, pulmonary arteries for suspected pulmonary embolism and liver. Radiation doses were examined for the CT dose index CTDIvol and dose-length product (DLP). Radiation doses of DECT were significantly higher than doses for SECT. In terms of CTDIvol, radiation doses were 1.1–3.2 times higher, and in terms of DLP, these were 1.1–3.8 times higher for DECT compared with SECT. The third-generation dual-source CT applied the lowest dose in 7 of 15 different examination types of different anatomic regions.