In this study, a novel design concept for PEMFC (polymer electrolytemembrane fuel cell) stacks is presented with singlecells inserted in pockets surrounded by a hydraulic medium. Thehydraulic pressure introduces necessary compression forces to themembrane electrode assembly of each cell within a stack. Moreover, homogeneous cell cooling is achieved by this medium. First,prototypes presented in this work indicate that, upscaling of cells for the novelstack design is possible without significantperformancelosses. Due to its modularity and scalability, this stackdesign meets the requirements for large PEMFC units.
Im Rahmen der Energiewende ist eine Erweiterung der in das Verbund-netz integrierten Energiespeicher notwendig, um zukünftig die heute gewohnte Versorgungssicherheit trotz eines sehr hohen Anteils volatiler regenerativer Energieerzeugungsanlagen zu ermöglichen. Eine geeignete elektrochemische Methode zur umweltfreundlichen Zwischenspeicherung großer Energiemengen stellt die Wasserelektrolyse mit bedarfsorientierter Rückverstromung dar. Dabei können die dynamischen Einspeise- und Laständerungen im elektrischen Verbundnetz im besonderen Maße von Elektrolyseur- und Brennstoffzellen-systemen auf Basis von Polymer-Elektrolyt-Membranen (PEM) aufgefangen werden.
Bestehende PEM-Systeme sind vor allem in ihrer konstruktiven Zellgröße und ihrer maximalen Leistung bei der Wasserstoffproduktion bzw. der Stromerzeugung stark begrenzt. Vor allem inhomogene Verpressungen großflächiger planarer Zellen in einem klassischen, mechanisch verspannten Stack führen zu hohen Leistungseinbußen. Zudem ergeben sich bei kleinen Stacks aufgrund der geringen Zellspannung ungünstige Wandlungsverhältnisse zwischen Strom und Spannung für eine vor- bzw. nachgeschaltete Leistungselektronik. Ein neuartiges Stackkonzept mit segmentierten Polplatten bietet eine konstruktive Lösung für das Problem größerer aktiver Zellflächen und leistet einen Beitrag zur Entwicklung industriell einsetzbarer Hochdruckelektrolyseure und Brennstoffzellen.