Refine
Document Type
- video (57)
- Conference Proceeding (8)
Keywords
- Robotik (30)
- Flugkörper (21)
- UAV (21)
- Rettungsrobotik (8)
- 3D Modell (7)
- Rasenmäher (4)
- DRZ (3)
- Deutsches Rettungsrobotik-Zentrum (3)
- SLAM (3)
- Kartierung (2)
The two churches, San Francesco and Sant'Agostino in Amatrice, Italy was hit by an earthquake on August 24 2016. Both churches are in a state of partial collapse, in need of shoring to prevent potential further destruction and to preserve the national heritage. The video show the mission at 1.Sept.2016 in clips of 10 seconds.
The TRADR project was asked by the Italian firebrigade Vigili del Fuoco to provide 3D textured models of two churches.
The team entered San Francesco with two UGVs (ground robots) and one UAV (drone, flown by Prof. Surmann), teleoperating them entirely out of line of sight and partially in collaboration. We entered Sant'Agostino with one UAV (also flown by Prof. Surmann) while two other UAVs were providing a view from different angles to facilitate maneuvering them entirely out of line of sight.
Venice 2018: Tradr Review
(2018)
The video shows an orthopoto and a textured 3D model of the location. 300 images were recorded in two short flights with a Mavic Pro in 50 meter height. The first one was a single grid while the camera facing down and the second one was a double grid facing the camera at an 60 degree angle. The 3D model is computed with OpenDroneMap.
This video shows a model computed from 124 images taken at the Tjex 2015 of the trade project (www.tradr-project.eu). The images were acquired by walking around the object and reconstruct the structure with VisualSfm software.
This video shows a model computed from 320 images taken at the Tjex 2015 of the trade project (www.tradr-project.eu). The images were acquired with a falcan 8 drone (AscTec) and reconstruct the structure with VisualSfm software. The flight was in 150 m. The Tower is about 95 meter high.
The video shows a snapshot of a 16 minute flight of a DJI Phantom 3 professional over the Schloss Birlinghoven at Sankt Augustin, Germany. The castle is located at the Fraunhofer Campus at Sankt Augustin. The 3D model is generated out of 400 key frames of the 4k video which are cut out with ffmpeg. The work is part of an evaluation in the Tradr Project (www.tradr-project.eu)
Global registration of heterogeneous ground and aerial mapping data is a challenging task. This is especially difficult in disaster response scenarios when we have no prior information on the environment and cannot assume the regular order of man-made environments or meaningful semantic cues. In this work we extensively evaluate different approaches to globally register UGV generated 3D point-cloud data from LiDAR sensors with UAV generated point-cloud maps from vision sensors. The approaches are realizations of different selections for: a) local features: key-points or segments; b) descriptors: FPFH, SHOT, or ESF; and c) transformation estimations: RANSAC or FGR. Additionally, we compare the results against standard approaches like applying ICP after a good prior transformation has been given. The evaluation criteria include the distance which a UGV needs to travel to successfully localize, the registration error, and the computational cost. In this context, we report our findings on effectively performing the task on two new Search and Rescue datasets. Our results have the potential to help the community take informed decisions when registering point-cloud maps from ground robots to those from aerial robots.
This paper presents a novel approach to build consistent 3D maps for multi robot cooperation in USAR environments. The sensor streams from unmanned aerial vehicles (UAVs) and ground robots (UGV) are fused in one consistent map. The UAV camera data are used to generate 3D point clouds that are fused with the 3D point clouds generated by a rolling 2D laser scanner at the UGV. The registration method is based on the matching of corresponding planar segments that are extracted from the point clouds. Based on the registration, an approach for a globally optimized localization is presented. Apart from the structural information of the point clouds, it is important to mention that no further information is required for the localization. Two examples show the performance of the overall registration.