When a hydrophilic solute in water is suddenly turned into a hydrophobic species, for instance, by photoionization, a layer of hydrated water molecules forms around the solute on a time scale of a few picoseconds. We study the dynamic buildup of the hydration shell around a hydrophobic solute on the basis of a time-dependent dielectric continuum model. Information about the solvent is spectroscopically extracted from the relaxation dynamics of a test dipole inside a static Onsager sphere in the nonequilibrium solvent. The growth process is described phenomenologically within two approaches. First, we consider a time-dependent thickness of the hydration layer that grows from zero to a finite value over a finite time. Second, we assume a time-dependent complex permittivity within a finite layer region around the Onsager sphere. The layer is modeled as a continuous dielectric with a much slower fluctuation dynamics. We find a time-dependent frequency shift down to the blue of the resonant absorption of the dipole, together with a dynamically decreasing line width, as compared to bulk water. The blue shift reflects the work performed against the hydrogen-bonded network of the bulk solvent and is a directly measurable quantity. Our results are in agreement with an experiment on the hydrophobic solvation of iodine in water.
We propose a quantum-mechanical model to calculate the current through a single molecular junction immersed in a solvent and surrounded by a thin shell of bound water under an applied ac voltage. The solvent plus hydration shell are captured by a dielectric continuum model for which the resulting spectral density is determined. Here the dielectric properties, e.g., the Debye relaxation time and the dielectric constant, of the bulk solvent and the hydration shell as well as the shell thickness directly enter. We determine the charge current through the molecular junction under an ac voltage in the sequential tunneling regime where we solve a quantum master equation by a real-time diagrammatic technique. Interestingly, the Fourier components of the charge current show an exponential-like decline when the hydration shell thickness increases. Finally, we apply our findings to binary solvent mixtures with varying volume fractions and find that the current is highly sensitive to both the hydration shell thickness as well as the volume fraction of the solvent mixture, giving rise to possible applications as shell and concentration sensors on the molecular scale.