Refine
Keywords
- Field measurement (2)
- Solar modules (2)
- Performance prediction (1)
- Temperature coefficients (1)
In this work a mathematical approach to calculate solar panel temperature based on measured irradiance, temperature and wind speed is applied. With the calculated module temperature, the electrical solar module characteristics is determined. A program developed in MatLab App Designer allows to import measurement data from a weather station and calculates the module temperature based on the mathematical NOCT and stationary approach with a time step between the measurements of 5 minutes. Three commercially available solar panels with different cell and interconnection technologies are used for the verification of the established models. The results show a strong correlation between the measured and by the stationary model predicted module temperature with a coefficient of determination R2 close to 1 and a root mean square deviation (RMSE) of ≤ 2.5 K for a time period of three months. Based on the predicted temperature, measured irradiance in module plane and specific module information the program models the electrical data as time series in 5-minute steps. Predicted to measured power for a time period of three months shows a linear correlation with an R2 of 0.99 and a mean absolute error (MAE) of 3.5, 2.7 and 4.8 for module ID 1, 2 and 3. The calculated energy (exemplarily for module ID 2) based on the measured, calculated by the NOCT and stationary model for this time period is 118.4 kWh, resp. 116.7 kWh and 117.8 kWh. This is equivalent to an uncertainty of 1.4% for the NOCT and 0.5% for the stationary model.
Advanced Determination of Temperature Coefficients of Photovoltaic Modules by Field Measurements
(2023)
In this work data from outdoor measurements, acquired over the course of up to three years on commercially available solar panels, is used to determine the temperature coefficients and compare these to the information as stated by the producer in the data sheets. A program developed in MatLab App Designer allows to import the electrical and ambient measurement data. Filter algorithms for solar irradiance narrow the irradiance level down to ~1000 W/m2 before linear regression methods are applied to obtain the temperature coefficients. A repeatability investigation proves the accuracy of the determined temperature coefficients which are in good agreement to the supplier specification if the specified values for power are not larger than -0.3%/K. Further optimization is achieved by applying wind filter techniques and days with clear sky condition. With the big (measurement) data on hand it was possible to determine the change of the temperature coefficients for varying irradiance. As stated in literature we see an increase of the temperature coefficient of voltage and a decline for the temperature coefficient of power with increasing irradiance.