In the modern Web, service providers often rely heavily on third parties to run their services. For example, they make use of ad networks to finance their services, externally hosted libraries to develop features quickly, and analytics providers to gain insights into visitor behavior.
For security and privacy, website owners need to be aware of the content they provide their users. However, in reality, they often do not know which third parties are embedded, for example, when these third parties request additional content as it is common in real-time ad auctions.
In this paper, we present a large-scale measurement study to analyze the magnitude of these new challenges. To better reflect the connectedness of third parties, we measured their relations in a model we call third party trees, which reflects an approximation of the loading dependencies of all third parties embedded into a given website. Using this concept, we show that including a single third party can lead to subsequent requests from up to eight additional services. Furthermore, our findings indicate that the third parties embedded on a page load are not always deterministic, as 50 % of the branches in the third party trees change between repeated visits. In addition, we found that 93 % of the analyzed websites embedded third parties that are located in regions that might not be in line with the current legal framework. Our study also replicates previous work that mostly focused on landing pages of websites. We show that this method is only able to measure a lower bound as subsites show a significant increase of privacy-invasive techniques. For example, our results show an increase of used cookies by about 36 % when crawling websites more deeply.
The European General Data Protection Regulation (GDPR), which went into effect in May 2018, brought new rules for the processing of personal data that affect many business models, including online advertising. The regulation’s definition of personal data applies to every company that collects data from European Internet users. This includes tracking services that, until then, argued that they were collecting anonymous information and data protection requirements would not apply to their businesses.
Previous studies have analyzed the impact of the GDPR on the prevalence of online tracking, with mixed results. In this paper, we go beyond the analysis of the number of third parties and focus on the underlying information sharing networks between online advertising companies in terms of client-side cookie syncing. Using graph analysis, our measurement shows that the number of ID syncing connections decreased by around 40 % around the time the GDPR went into effect, but a long-term analysis shows a slight rebound since then. While we can show a decrease in information sharing between third parties, which is likely related to the legislation, the data also shows that the amount of tracking, as well as the general structure of cooperation, was not affected. Consolidation in the ecosystem led to a more centralized infrastructure that might actually have negative effects on user privacy, as fewer companies perform tracking on more sites.
Computational methods for the accurate prediction of protein folding based on amino acid sequences have been researched for decades. The field has been significantly advanced in recent years by deep learning-based approaches, like AlphaFold, RoseTTAFold, or ColabFold. Although these can be used by the scientific community in various, mostly free and open ways, they are not yet widely used by bench scientists in relevant fields such as protein biochemistry or molecular biology, who are often not familiar with software tools such as scripting notebooks, command-line interfaces or cloud computing. In addition, visual inspection functionalities like protein structure displays, structure alignments, and specific protein hotspot analyses are required as a second step to interpret and apply the predicted structures in ongoing research studies.
PySSA (Python rich client for visual protein Sequence to Structure Analysis) is an open Graphical User Interface (GUI) application combining the protein sequence to structure prediction capabilities of ColabFold with the open-source variant of the molecular structure visualisation and analysis system PyMOL to make both available to the scientific end-user. PySSA enables the creation of managed and shareable projects with defined protein structure prediction and corresponding alignment workflows that can be conveniently performed by scientists without specialised computer skills or programming knowledge on their local computers. Thus, PySSA can help make protein structure prediction more accessible for end-users in protein chemistry and molecular biology as well as be used for educational purposes. It is openly available on GitHub, alongside a custom graphical installer executable for the Windows operating system: https://github.com/urban233/PySSA/wiki/Installation-for-Windows-Operating-System.
To demonstrate the capabilities of PySSA, its usage in a protein mutation study on the protein drug Bone Morphogenetic Protein 2 (BMP2) is described: the structure prediction results indicate that the previously reported BMP2-2Hep-7M mutant, which is intended to be less prone to aggregation, does not exhibit significant spatial rearrangements of amino acid residues interacting with the receptor.