An automated pipeline for comprehensive calculation of intermolecular interaction energies based on molecular force-fields using the Tinker molecular modelling package is presented. Starting with non-optimized chemically intuitive monomer structures, the pipeline allows the approximation of global minimum energy monomers and dimers, configuration sampling for various monomer-monomer distances, estimation of coordination numbers by molecular dynamics simulations, and the evaluation of differential pair interaction energies. The latter are used to derive Flory-Huggins parameters and isotropic particle-particle repulsions for Dissipative Particle Dynamics (DPD). The computational results for force fields MM3, MMFF94, OPLSAA and AMOEBA09 are analyzed with Density Functional Theory (DFT) calculations and DPD simulations for a mixture of the non-ionic polyoxyethylene alkyl ether surfactant C10E4 with water to demonstrate the usefulness of the approach.
An automated pipeline for comprehensive calculation of intermolecular interaction energies based on molecular force-fields using the Tinker molecular modelling package is presented. Starting with non-optimized chemically intuitive monomer structures, the pipeline allows the approximation of global minimum energy monomers and dimers, configuration sampling for various monomer-monomer distances, estimation of coordination numbers by molecular dynamics simulations, and the evaluation of differential pair interaction energies. The latter are used to derive Flory-Huggins parameters and isotropic particle-particle repulsions for Dissipative Particle Dynamics (DPD). The computational results for force fields MM3, MMFF94, OPLS-AA and AMOEBA09 are analyzed with Density Functional Theory (DFT) calculations and DPD simulations for a mixture of the non-ionic polyoxyethylene alkyl ether surfactant C10E4 with water to demonstrate the usefulness of the approach.