Refine
Year of publication
- 2016 (3) (remove)
Document Type
- Article (2)
- Conference Proceeding (1)
Keywords
- Implantat (1)
- Kernspintomografie (1)
- Spondylodese (1)
A simplified model for spondylodesis, ie fixation of vertebrae by osteosynthesis, is developed for virtual magnetic resonance imaging (MRI) examinations to numerically calculate energy absorption. This paper presents results of calculated energy absorption in body tissue surrounding titanium rod implants. In general each wire or rod behaves like an antenna in electromagnetic fields. The specific absorption rate (SAR) profile describes dependence of implant size. SAR hotspots appear near the rod edges. Depending of the size of implant fixation SAR is 62%(small fixation) up to 90.95%(large fixation) higher than without implants. In addition, local SAR profile displays local dependency on tissue: SAR is lower between the vertebrae.
Metallic implants in magnetic resonance imaging (MRI) are a potential safety risk since the energy absorption may increase temperature of the surrounding tissue. The temperature rise is highly dependent on implant size. Numerical examinations can be used to calculate the energy absorption in terms of the specific absorption rate (SAR) induced by MRI on orthopaedic implants. This research presents the impact of titanium osteosynthesis spine implants, called spondylodesis, deduced by numerical examinations of energy absorption in simplified spondylodesis models placed in 1.5 T and 3.0 T MRI body coils. The implants are modelled along with a spine model consisting of vertebrae and disci intervertebrales thus extending previous investigations [1], [2]. Increased SAR values are observed at the ends of long implants, while at the center SAR is significantly lower. Sufficiently short implants show increased SAR along the complete length of the implant. A careful data analysis reveals that the particular anatomy, i.e. vertebrae and disci intervertebrales, has a significant effect on SAR. On top of SAR profile due to the implant length, considerable SAR variations at small scale are observed, e.g. SAR values at vertebra are higher than at disc positions.
Metallic implants in magnetic resonance imaging (MRI) are a potential safety risk since the energy absorption may increase temperature of the surrounding tissue. The temperature rise is highly dependent on implant size. Numerical examinations can be used to calculate the energy absorption in terms of the specific absorption rate (SAR) induced by MRI on orthopaedic implants. This research presents the impact of titanium osteosynthesis spine implants, called spondylodesis, deduced by numerical examinations of energy absorption in simplified spondylodesis models placed in 1.5 T and 3.0 T MRI body coils. The implants are modelled along with a spine model consisting of vertebrae and disci intervertebrales thus extending previous investigations [1, 2]. Increased SARvalues are observed at the ends of long implants, while at the center SAR is significantly lower. Sufficiently short implants show increased SAR along the complete length of the implant. A careful data analysis reveals that the particular anatomy, i.e. vertebrae and disci intervertebrales, has a significant effect on SAR. On top of SAR profile due to the implant length, considerable SAR variations at small scale are observed, e.g. SAR values at vertebra are higher than at disc positions.