Refine
The membrane electrode assemblies (MEA) for polymer electrolyte membrane fuel cells (PEMFC) developed at the Westphalian Energy Institute are based on oxygen plasma activated carbon nanotubes (CNT) doped with platinum particles. For electrode preparation an ink is used containing the activated CNTs as well as hydrophobic and hydrophilic material in solved form. After this ink is sprayed onto a graphitic substrate platinum particles are deposited by pulse plating method, where the plasma activation enhances CNT dispersibility as well as platinum deposition. This materials mixture is structured in nanoscale with the aim to increase the catalyst particles’ specific surface. For low reactance at operation, homogeneous compression of the MEA’s layers is necessary within a PEMFC. A novel stack architecture for electrochemical cells, especially PEMFC as well as PEM electrolysers, has been developed in order to achieve ideal cell operation conditions. Single cells of such a stack are inserted into flexible slots that are surrounded by a hydraulic medium which is pressurised during operation in order to achieve an even compression and cooling of the stack’s cells. With this stack design it has been possible to construct a test facility for simultaneous characterisation of several MEA samples. As compression and temperature conditions of every single sample are the same, the effects of e.g. different electrode configurations can be investigated with the novel test system.
To further increase platinum utilisation in PEM fuel cells CNFs are investigated as catalyst support material due to the CNF’s high specific surface area. Furthermore, CNFs provide suitable properties concerning corrosion resistance as well as electrical conductivity in contrast to conventional carbon supports.
This work presents the results of an electrode preparation procedure based on O2 plasma activated CNFs. The plasma treatment leads to CNF dispersibility in alcohol/water for a spray coating process. Furthermore, O2 plasma activation enhances metal deposition on the CNF’s surface. Pulse plating procedure as well as wet chemical metal synthesis have been used for particle deposition. For pulse plating a potentiostat/galvanostat type MMates 510 AC from Materials Mates, Italy has been used. Electrode morphology has been determined in SEM type XL 30 ESEM from Philips, The Netherlands.