Refine
Document Type
- Article (5)
- Conference Proceeding (1)
Keywords
- NiCrBSi coatings; flame spraying; induction remelting; wear resistance (1)
- PEM fuel cell (1)
- Polymer-Elektrolytmembran-Brennstoffzelle (1)
- Stack <Brennstoffzelle> (1)
- Stellite 6; HVOF-spraying; Laser remelting; Cavitation erosion; Coatings (1)
- Titanium; Al2O3–TiO2 coatings; Nanoindentation (1)
- hydraulic compression (1)
- modular stack design (1)
Institute
Optimization of the laser remelting process for HVOF-sprayed Stellite 6 wear resistant coatings
(2016)
Cobalt base alloys are used in all industrial areas due to their excellent wear resistance. Several studies have shown that Stellite 6 coatings are suitable not only for protection against sliding wear, but also in case of exposure to impact loading. In this respect, a possible application is the protection of hydropower plant components affected by cavitation. The main problem in connection with Stellite 6 is the deposition procedure of the protective layers, both welding and thermal spraying techniques requesting special measures in order to prevent the brittleness of the coating. In this study, Stellite 6 layers were HVOF thermally sprayed on a martensitic 13-4 stainless steel substrate, as usually used for hydraulic machinery components. In order to improve the microstructure of the HVOF-sprayed coatings and their adhesion to the substrate, laser remelting was applied, using a TRUMPF Laser type HL 124P LCU and different working parameters. The microstructure of the coatings, obtained for various remelting conditions, was evaluated by light microscopy, showing the optimal value of the pulse power, which provided a homogenous Stellite 6 layer with good adhesion to the substrate.
Based on the fact that titanium and titanium alloys have poor fretting fatigue resistance and poor tribological properties, it is necessary to apply some surface engineering methods in order to increase the exploitation characteristics of these materials. One may either implement some surface treatment technologies or even deposit overlay coatings by thermal spraying.
The present study is focused on the achieved properties of the ceramic coatings (Al2O3 + 13 wt.% TiO2) deposited onto a titanium substrate using high velocity oxygen fuel (HVOF) and plasma spraying (APS) respectively.
The effect of the deposition method on the microstructure, phase constituents, and mechanical properties of the ceramic coatings was investigated by means of scanning electron microscopy (SEM), X-ray diffraction technique (XRD) and nanoindentation tests. The sliding wear performances of the Al2O3–TiO2 coatings were tested using a pin on disk wear tester.
This report gives a brief overview to the state of the art of PEM fuel cell technology and a description of a newly developed fuel cell stack concept. One main research activity at the Westphalian Energy Institute of the Westphalian University of Applied Sciences is the development of PEM fuel cells, for which a range of different materials have been investigated for fuel cell pole plate construction. Whereas graphite is a material which has suitable properties concerning conductivity as well as manufacturing e.g. for milling, stainless steel foils are suitable for economical hydroforming processes. However, with steel coating is necessary to increase corrosion resistance as well as electrical conductivity. A new fuel cell stack design is currently under development using separated single fuel cells with hydraulic cell compression. The advantages of this stack concept are modularity, effective heat exchanging and constant, uniform cell compression which are further described in this work.
In polymer electrolyte membrane fuel cells (PEMFC) noble metal nano particles are deposited on graphitic supports serving as electrocatalysts for devices with high power density. In this study anodes are analysed with low platinum loading of about 0.1 mg cm-2. These electrodes are prepared by carbon nano fibres (CNF) decorated with platinum nano particles. For electrode manufacturing two sorts of fibres, which are produced in an industrial scale, are used with different graphitisation degree and surface area. CNF layers are applied on commercially available graphitic substrate by spray coating which leads to a porous structure with high surface area. Subsequently, platinum deposition is achieved by pulsed electroplating for an improved platinum utilisation in PEMFC electrodes. Spray coating and platinum deposition are assisted by a previous oxygen plasma activation process. Prepared anode material is characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectroscopy (XRD), X-ray fluorescence spectroscopy (XRF) and thermogravimetry (TGA). Electrochemical analyses (cyclic voltammetry and corrosion test) are carried out in 0.5 M sulphuric acid. The effect of graphitisation degree of carbon nano fibres on the performance of prepared electrodes is investigated in-situ in a PEM fuel cell test bench.
In this experimental work polymer electrolyte membrane fuel cell (PEMFC) electrodes are analysed, which are prepared by the use of two sorts of carbon nano fibres (CNF) serving as support material for platinum nano particles. Those CNFs, which are heat treated subsequently to their production, have a higher graphitisation degree than fibres as produced. The improved graphitisation degree leads to higher electrical conductivity, which is favourably for the use in PEMFC electrodes. Samples have been analysed, in order to determine graphitisation degree, electrical conductivity, as well as morphology and loading of the prepared electro catalyst. Membrane electrode assemblies manufactured from prepared electrodes are analysed in-situ in a PEM fuel cell test environment. It has been determined that power output for samples containing CNFs with higher graphitisation degree is increased by about 13.5%.
Ni-based alloys are among the materials of choice in developing high-quality coatings for ambient and high temperature applications that require protection against intense wear and corrosion. The current study aims to develop and characterize NiCrBSi coatings with high wear resistance and improved adhesion to the substrate. Starting with nickel-based feedstock powders, thermally sprayed coatings were initially fabricated. Prior to deposition, the powders were characterized in terms of microstructure, particle size, chemical composition, flowability, and density. For comparison, three types of powders with different chemical compositions and characteristics were deposited onto a 1.7227 tempered steel substrate using oxyacetylene flame spraying, and subsequently, the coatings were inductively remelted. Ball-on-disc sliding wear testing was chosen to investigate the tribological properties of both the as-sprayed and induction-remelted coatings. The results reveal that, in the case of as-sprayed coatings, the main wear mechanisms were abrasive, independent of powder chemical composition, and correlated with intense wear losses due to the poor intersplat cohesion typical of flame-sprayed coatings. The remelting treatment improved the performance of the coatings in terms of wear compared to that of the as-sprayed ones, and the density and lower porosity achieved during the induction post-treatment had a significant positive role in this behavior.