Based on the fact that titanium and titanium alloys have poor fretting fatigue resistance and poor tribological properties, it is necessary to apply some surface engineering methods in order to increase the exploitation characteristics of these materials. One may either implement some surface treatment technologies or even deposit overlay coatings by thermal spraying.
The present study is focused on the achieved properties of the ceramic coatings (Al2O3 + 13 wt.% TiO2) deposited onto a titanium substrate using high velocity oxygen fuel (HVOF) and plasma spraying (APS) respectively.
The effect of the deposition method on the microstructure, phase constituents, and mechanical properties of the ceramic coatings was investigated by means of scanning electron microscopy (SEM), X-ray diffraction technique (XRD) and nanoindentation tests. The sliding wear performances of the Al2O3–TiO2 coatings were tested using a pin on disk wear tester.
Optimization of the laser remelting process for HVOF-sprayed Stellite 6 wear resistant coatings
(2016)
Cobalt base alloys are used in all industrial areas due to their excellent wear resistance. Several studies have shown that Stellite 6 coatings are suitable not only for protection against sliding wear, but also in case of exposure to impact loading. In this respect, a possible application is the protection of hydropower plant components affected by cavitation. The main problem in connection with Stellite 6 is the deposition procedure of the protective layers, both welding and thermal spraying techniques requesting special measures in order to prevent the brittleness of the coating. In this study, Stellite 6 layers were HVOF thermally sprayed on a martensitic 13-4 stainless steel substrate, as usually used for hydraulic machinery components. In order to improve the microstructure of the HVOF-sprayed coatings and their adhesion to the substrate, laser remelting was applied, using a TRUMPF Laser type HL 124P LCU and different working parameters. The microstructure of the coatings, obtained for various remelting conditions, was evaluated by light microscopy, showing the optimal value of the pulse power, which provided a homogenous Stellite 6 layer with good adhesion to the substrate.
In polymer electrolyte membrane fuel cells (PEMFC) noble metal nano particles are deposited on graphitic supports serving as electrocatalysts for devices with high power density. In this study anodes are analysed with low platinum loading of about 0.1 mg cm-2. These electrodes are prepared by carbon nano fibres (CNF) decorated with platinum nano particles. For electrode manufacturing two sorts of fibres, which are produced in an industrial scale, are used with different graphitisation degree and surface area. CNF layers are applied on commercially available graphitic substrate by spray coating which leads to a porous structure with high surface area. Subsequently, platinum deposition is achieved by pulsed electroplating for an improved platinum utilisation in PEMFC electrodes. Spray coating and platinum deposition are assisted by a previous oxygen plasma activation process. Prepared anode material is characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectroscopy (XRD), X-ray fluorescence spectroscopy (XRF) and thermogravimetry (TGA). Electrochemical analyses (cyclic voltammetry and corrosion test) are carried out in 0.5 M sulphuric acid. The effect of graphitisation degree of carbon nano fibres on the performance of prepared electrodes is investigated in-situ in a PEM fuel cell test bench.
In this experimental work polymer electrolyte membrane fuel cell (PEMFC) electrodes are analysed, which are prepared by the use of two sorts of carbon nano fibres (CNF) serving as support material for platinum nano particles. Those CNFs, which are heat treated subsequently to their production, have a higher graphitisation degree than fibres as produced. The improved graphitisation degree leads to higher electrical conductivity, which is favourably for the use in PEMFC electrodes. Samples have been analysed, in order to determine graphitisation degree, electrical conductivity, as well as morphology and loading of the prepared electro catalyst. Membrane electrode assemblies manufactured from prepared electrodes are analysed in-situ in a PEM fuel cell test environment. It has been determined that power output for samples containing CNFs with higher graphitisation degree is increased by about 13.5%.