Informatik und Kommunikation
360° UAV Flight in a collapse test setup at the German Resuce Robotik Center
360° Camera at a small UAV
(2021)
Durch Panoramen in Kombination mit dem ORB-SLAM ist ein schnelles Tracking möglich, liefert jedoch ausschließlich spärliche Daten. Durch die Kombination mit einem neuronalen Netz soll der SLAM Algorithmus zu einem RGBD-SLAM erweitert werden, um ein besseres Tracking und eine dichtere Punktwolke zu gewährleisten.
At the beginning of the pandemic in Feb. 2020 I had a little time and wanted to do something new i.e. bring my 3D printer, AI and computer science together somehow. The result is a printed portrait with a lot of computer science. Using style transfer I transferred the etching style of a Göthe portrait to a young girl I call Carolin. By means of image processing I made a black and white picture out of it. Then, using the problem of the traveling salesman, each black point in the picture is interpreted as a city and the whole picture is drawn by only one line. Since this line is very long, it is optimized and shortened by a so-called simulated annealing algorithm. The result is printed in 5 layers on a 3D printer.
This technical report is about the architecture and integration of very small commercial UAVs (< 40 cm diagonal) in indoor Search and Rescue missions. One UAV is manually controlled by only one single human operator delivering live video streams and image series for later 3D scene modelling and inspection. In order to assist the operator who has to simultaneously observe the environment and navigate through it we use multiple deep neural networks to provide guided autonomy, automatic object detection and classification and local 3D scene modelling. Our methods help to reduce the cognitive load of the operator. We describe a framework for quick integration of new methods from the field of Deep Learning, enabling for rapid evaluation in real scenarios, including the interaction of methods.