Maschinenbau Bocholt
Refine
Year of publication
Document Type
- Conference Proceeding (25)
- Article (12)
- Part of a Book (3)
- Bachelor Thesis (2)
- Book (2)
- Contribution to a Periodical (2)
- audio (2)
Keywords
- Bionik (7)
- Strukturoptimierung (4)
- adhesion (4)
- Gespenstschrecken (3)
- Haftorgan (3)
- Leichtbau (3)
- stick insects (3)
- biomimicry (2)
- Anorganische Analyse (1)
- Bildverarbeitung (1)
This chapter describes a new concept and experiences of a distributed interdisciplinary learning program for students across continents. The aim is to provide students with a truly Global Intercultural Project Experience (GIPE) by working together with peers from around the world and solving real-life client’s problems. We have received seed-funding for four annual projects to engage students from Germany (Europe), Namibia (Africa), Indonesia (Asia), and Peru (South America). In 2020 and 2021, 28 and 44 students from four continents engaged in a one-semester distributed interdisciplinary project for a Namibian and Indonesian client, respectively. Despite Covid-19 they successfully completed the project expressing deep appreciation for the learning opportunities overcoming challenges of working across widespread time zones, cultures, changing requirements, and various technical difficulties. Considering the vast learning benefits, we suggest incorporating such projects in all tertiary education curricula across the globe, while streamlining organizational efforts based on lessons learned.
We investigated the formation of Artemia franciscana swarms of freshly hatched instar I nauplii larvae. Nauplii were released into light gradients but then interrupted by light-direction changes, small obstacles, or long barriers. All experiments were carried out horizontally. Each experiment used independent replicates. Freshly produced Artemia broods were harvested from independent incubators thus providing true replicate cohorts of Artemia subjected as replicates to the experimental treatments.
We discovered that Artemia nauplii swarms can: 1. repeatedly react to non-obstructed light gradients that undergo repeated direction-changes and do so in a consistent way, 2. find their way to a light source within maze-like arrangements made from small transparent obstacles, 3. move as a swarm around extended transparent barriers, following a light gradient. This paper focuses on the recognition of whole-swarm behaviors, the description thereof and the recognition of differences in whole-swarm movements comparing non-obstructed swarming with swarms encountering obstacles. Investigations of the within-swarm behaviors of individual Artemia nauplii and their interactions with neighboring nauplii are in progress, e.g. in order to discover the underlying swarming algorithms and differences
thereof comparing non-obstructed vs. obstructed pathways.
Biomimetics is a well-known approach for technical innovation. However, most of its influence remains in the academic field. One option for increasing its application in the practice of technical design is to enhance the use of the biomimetic process with a step-by-step standard, building a bridge to common engineering procedures. This article presents the endeavor of an interdisciplinary expert panel from the fields of biology, engineering science, and industry to develop a standard that links biomimetics to the classical processes of product development and engineering design. This new standard, VDI 6220 Part 2, proposes a process description that is compatible and connectable to classical approaches in engineering design. The standard encompasses both the solution-based and the problem-driven process of biomimetics. It is intended to be used in any product development process for more biomimetic applications in the future.
Fruits (follicles) of Hakea salicifolia and Hakea sericea (Proteaceae) are characterised by pronounced lignification and open via a ventral suture and the dorsal side. The opening along both sides is unique within the Proteaceae. Both serotinous species are obligate seeders, whose spreading benefits from bush fire events. The different tissues and the course of the vascular bundles must allow the opening mechanism. While their 2D-arrangements are known to some extent from light-microscopy images of cross-sections, this work presents their three-dimensional structures and discusses their contribution to the opening of Hakea fruits. For this purpose, 3D greyscale images, reconstructed from µCT-projection data of both fruits are segmented, assisted by a deep learning algorithm (AI algorithm). 3D renderings from these segmentations show strongly interconnected vascular bundles that build a double-dome shaped network in each valve of H. salicifolia and a dome shaped honeycomb-structure in each valve of H. sericea. However, the vascular bundles of both species show no interconnection between the two lateral valves of the fruit but leave gaps for predetermined fracture tissues on the ventral and dorsal side. The opening of the fruits after a fire or after separation from the mother plant can be explained by the anisotropic shrinkage in the two valves of the fruit.
This paper describes a new concept and experiences of a distributed interdisciplinary learning programme for students across continents. The aim is to provide students with a truly Global Intercultural Project Experience (GIPE) by working together with peers from around the world, and solving real-life client’s problems. We have received seed-funding for four annual projects to engage students from Germany (Europe), Namibia (Africa), Indonesia (Asia), and Peru (Latin-America). In 2020, 30 students from four continents engaged in a one-semester distributed software development project for a Namibian client. Despite Covid-19 they successfully completed the project expressing deep appreciation for the learning opportunities overcoming challenges of working across wide-spread time zones, cultures, changing requirements, and various technical challenges. Considering the vast learning benefits, we suggest to incorporate such projects in all tertiary education curricula across the globe.
Competency-oriented exams offer a wide range of advantages, especially where the use and mastery of third-party applications and tools play an important role. Therefore, we developed a competency-oriented setup for both our programming classes and exams ensuring their constructive alignment.
Exams were moved to the computer lab and designed to test both conceptional skills as well as the use of state-of-the-art programming tools. At the peak of the COVID-19 pandemic, when exams had to be moved from lab to online, we needed to design an online setup for our practical programming exams preserving the competency-oriented approach and its constructive alignment as well as the validity, reliability and fairness of the exams. The key was to use the same online tools that have been introduced
for running lectures and practical classes offering almost the same learning experience as before the pandemic. However, to ensure the validity and fairness of the exams, some kind of online supervision needed to be implemented as technical solutions were found to be either unusable or not working
properly in our case. This paper discusses the driving factors, the resulting technical and organizational setup as well as students’ feedback and lessons learned for further improvements. Therefore, COVID-19 has not been able to ruin our competency-oriented programming exams.
Flying insects employ elegant optical-flow-based strategies to solve complex tasks such as landing or obstacle avoidance. Roboticists have mimicked these strategies on flying robots with only limited success, because optical flow (1) cannot disentangle distance from velocity and (2) is less informative in the highly important flight direction. Here, we propose a solution to these fundamental shortcomings by having robots learn to estimate distances to objects by their visual appearance. The learning process obtains supervised targets from a stability-based distance estimation approach. We have successfully implemented the process on a small flying robot. For the task of landing, it results in faster, smooth landings. For the task of obstacle avoidance, it results in higher success rates at higher flight speeds. Our results yield improved robotic visual navigation capabilities and lead to a novel hypothesis on insect intelligence: behaviours that were described as optical-flow-based and hardwired actually benefit from learning processes.
Biomimetics is the interdisciplinary co-operation of various scientific disciplines and fields of innovation, and it aims to solve practical problems using biological models. Biomimetic research and its fields of application are manifold, and the community is made up of a wide range of disciplines, from biologists and engineers to designers. Guidelines and standards can build a common ground for understanding of the field, communication across disciplines, present and future projects and implementation of biomimetic knowledge. Since 2015, three international standards have been published and defined terms and definitions, as well as specific applications. The scientific literature and patents in several databases were searched for citations of the published standards. Standards or technical guidelines on biomimetics are represented both in the scientific literature and in patents. However, taking into account the increasing number of publications in biomimetics, the number of publications (52) citing the international standards is low. This shows that the perception of technical rules is still underrepresented in the academic field. Greater awareness and acceptance of the importance of standards for quality assurance even in the academic environment is discussed, and active participation in the corresponding International Organization for Standardization committee on biomimetics is asked for.