Institut für biologische und chemische Informatik
Refine
Document Type
- Article (12)
- Preprint (5)
- Conference Proceeding (3)
- Doctoral Thesis (1)
Keywords
- DECIMER (2)
- Deep Learning (2)
- Deep learning (2)
- OCSR (2)
- OCSR, Optical Chemical Structure Recognition (2)
- Transformer (2)
- AI (1)
- Chemical structure depictions (1)
- Datensatz (1)
- Hand-drawn chemical structures (1)
Advancements in Hand-Drawn Chemical Structure Recognition through an Enhanced DECIMER Architecture
(2024)
Accurate recognition of hand-drawn chemical structures is crucial for digitising hand-written chemical information found in traditional laboratory notebooks or for facilitating stylus-based structure entry on tablets or smartphones. However, the inherent variability in hand-drawn structures poses challenges for existing Optical Chemical Structure Recognition (OCSR) software. To address this, we present an enhanced Deep lEarning for Chemical ImagE Recognition (DECIMER) architecture that leverages a combination of Convolutional Neural Networks (CNNs) and Transformers to improve the recognition of hand-drawn chemical structures. The model incorporates an EfficientNetV2 CNN encoder that extracts features from hand-drawn images, followed by a Transformer decoder that converts the extracted features into Simplified Molecular Input Line Entry System (SMILES) strings. Our models were trained using synthetic hand-drawn images generated by RanDepict, a tool for depicting chemical structures with different style elements. To evaluate the model's performance, a benchmark was performed using a real-world dataset of hand-drawn chemical structures. The results indicate that our improved DECIMER architecture exhibits a significantly enhanced recognition accuracy compared to other approaches.
The DECIMER.ai Project
(2024)
Over the past few decades, the number of publications describing chemical structures and their metadata has increased significantly. Chemists have published the majority of this information as bitmap images along with other important information as human-readable text in printed literature and have never been retained and preserved in publicly available databases as machine-readable formats. Manually extracting such data from printed literature is error-prone, time-consuming, and tedious. The recognition and translation of images of chemical structures from printed literature into machine-readable format is known as Optical Chemical Structure Recognition (OCSR). In recent years, deep-learning-based OCSR tools have become increasingly popular. While many of these tools claim to be highly accurate, they are either unavailable to the public or proprietary. Meanwhile, the available open-source tools are significantly time-consuming to set up. Furthermore, none of these offers an end-to-end workflow capable of detecting chemical structures, segmenting them, classifying them, and translating them into machine-readable formats.
To address this issue, we present the DECIMER.ai project, an open-source platform that provides an integrated solution for identifying, segmenting, and recognizing chemical structure depictions within the scientific literature. DECIMER.ai comprises three main components: DECIMER-Segmentation, which utilizes a Mask-RCNN model to detect and segment images of chemical structure depictions; DECIMER-Image Classifier EfficientNet-based classification model identifies which images contain chemical structures and DECIMER-Image Transformer which acts as an OCSR engine which combines an encoder-decoder model to convert the segmented chemical structure images into machine-readable formats, like the SMILES string.
A key strength of DECIMER.ai is that its algorithms are data-driven, relying solely on the training data to make accurate predictions without any hand-coded rules or assumptions. By offering this comprehensive, open-source, and transparent pipeline, DECIMER.ai enables automated extraction and representation of chemical data from unstructured publications, facilitating applications in chemoinformatics and drug discovery.
Advancements in hand-drawn chemical structure recognition through an enhanced DECIMER architecture
(2024)
Accurate recognition of hand-drawn chemical structures is crucial for digitising hand-written chemical information in traditional laboratory notebooks or facilitating stylus-based structure entry on tablets or smartphones. However, the inherent variability in hand-drawn structures poses challenges for existing Optical Chemical Structure Recognition (OCSR) software. To address this, we present an enhanced Deep lEarning for Chemical ImagE Recognition (DECIMER) architecture that leverages a combination of Convolutional Neural Networks (CNNs) and Transformers to improve the recognition of hand-drawn chemical structures. The model incorporates an EfficientNetV2 CNN encoder that extracts features from hand-drawn images, followed by a Transformer decoder that converts the extracted features into Simplified Molecular Input Line Entry System (SMILES) strings. Our models were trained using synthetic hand-drawn images generated by RanDepict, a tool for depicting chemical structures with different style elements. A benchmark was performed using a real-world dataset of hand-drawn chemical structures to evaluate the model's performance. The results indicate that our improved DECIMER architecture exhibits a significantly enhanced recognition accuracy compared to other approaches.
The number of publications describing chemical structures has increased steadily over the last decades. However, the majority of published chemical information is currently not available in machine-readable form in public databases. It remains a challenge to automate the process of information extraction in a way that requires less manual intervention - especially the mining of chemical structure depictions. As an open-source platform that leverages recent advancements in deep learning, computer vision, and natural language processing, DECIMER.ai (Deep lEarning for Chemical IMagE Recognition) strives to automatically segment, classify, and translate chemical structure depictions from the printed literature. The segmentation and classification tools are the only openly available packages of their kind, and the optical chemical structure recognition (OCSR) core application yields outstanding performance on all benchmark datasets. The source code, the trained models and the datasets developed in this work have been published under permissive licences. An instance of the DECIMER web application is available at https://decimer.ai.
The development of deep learning-based optical chemical structure recognition (OCSR) systems has led to a need for datasets of chemical structure depictions. The diversity of the features in the training data is an important factor for the generation of deep learning systems that generalise well and are not overfit to a specific type of input. In the case of chemical structure depictions, these features are defined by the depiction parameters such as bond length, line thickness, label font style and many others. Here we present RanDepict, a toolkit for the creation of diverse sets of chemical structure depictions. The diversity of the image features is generated by making use of all available depiction parameters in the depiction functionalities of the CDK, RDKit, and Indigo. Furthermore, there is the option to enhance and augment the image with features such as curved arrows, chemical labels around the structure, or other kinds of distortions. Using depiction feature fingerprints, RanDepict ensures diversely picked image features. Here, the depiction and augmentation features are summarised in binary vectors and the MaxMin algorithm is used to pick diverse samples out of all valid options. By making all resources described herein publicly available, we hope to contribute to the development of deep learning-based OCSR systems.
Recent years have seen a sharp increase in the development of deep learning and artificial intelligence-based molecular informatics. There has been a growing interest in applying deep learning to several subfields, including the digital transformation of synthetic chemistry, extraction of chemical information from the scientific literature, and AI in natural product-based drug discovery. The application of AI to molecular informatics is still constrained by the fact that most of the data used for training and testing deep learning models are not available as FAIR and open data. As open science practices continue to grow in popularity, initiatives which support FAIR and open data as well as open-source software have emerged. It is becoming increasingly important for researchers in the field of molecular informatics to embrace open science and to submit data and software in open repositories. With the advent of open-source deep learning frameworks and cloud computing platforms, academic researchers are now able to deploy and test their own deep learning models with ease. With the development of new and faster hardware for deep learning and the increasing number of initiatives towards digital research data management infrastructures, as well as a culture promoting open data, open source, and open science, AI-driven molecular informatics will continue to grow. This review examines the current state of open data and open algorithms in molecular informatics, as well as ways in which they could be improved in future.
The use of molecular string representations for deep learning in chemistry has been steadily increasing in recent years. The complexity of existing string representations, and the difficulty in creating meaningful tokens from them, lead to the development of new string representations for chemical structures. In this study, the translation of chemical structure depictions in the form of bitmap images to corresponding molecular string representations was examined. An analysis of the recently developed DeepSMILES and SELFIES representations in comparison with the most commonly used SMILES representation is presented where the ability to translate image features into string representations with transformer models was specifically tested. The SMILES representation exhibits the best overall performance whereas SELFIES guarantee valid chemical structures. DeepSMILES perform in between SMILES and SELFIES, InChIs are not appropriate for the learning task. All investigations were performed using publicly available datasets and the code used to train and evaluate the models has been made available to the public.