Institut für biologische und chemische Informatik
Refine
Year of publication
- 2022 (12) (remove)
Document Type
- Article (4)
- Conference Proceeding (3)
- Preprint (3)
- Other (2)
Keywords
- CDK (1)
- Chemical space (1)
- Chemical structure depictions (1)
- Cheminformatics (1)
- Chemistry Development Kit (1)
- Clustering (1)
- Deep learning (1)
- Fragmentation (1)
- Hand-drawn images (1)
- Molecule images (1)
The development of deep learning-based optical chemical structure recognition (OCSR) systems has led to a need for datasets of chemical structure depictions. The diversity of the features in the training data is an important factor for the generation of deep learning systems that generalise well and are not overfit to a specific type of input. In the case of chemical structure depictions, these features are defined by the depiction parameters such as bond length, line thickness, label font style and many others. Here we present RanDepict, a toolkit for the creation of diverse sets of chemical structure depictions. The diversity of the image features is generated by making use of all available depiction parameters in the depiction functionalities of the CDK, RDKit, and Indigo. Furthermore, there is the option to enhance and augment the image with features such as curved arrows, chemical labels around the structure, or other kinds of distortions. Using depiction feature fingerprints, RanDepict ensures diversely picked image features. Here, the depiction and augmentation features are summarised in binary vectors and the MaxMin algorithm is used to pick diverse samples out of all valid options. By making all resources described herein publicly available, we hope to contribute to the development of deep learning-based OCSR systems.
The concept of molecular scaffolds as defining core structures of organic molecules is utilised in many areas of chemistry and cheminformatics, e.g. drug design, chemical classification, or the analysis of high-throughput screening data. Here, we present Scaffold Generator, a comprehensive open library for the generation, handling, and display of molecular scaffolds, scaffold trees and networks. The new library is based on the Chemistry Development Kit (CDK) and highly customisable through multiple settings, e.g. five different structural framework definitions are available. For display of scaffold hierarchies, the open GraphStream Java library is utilised. Performance snapshots with natural products (NP) from the COCONUT (COlleCtion of Open Natural prodUcTs) database and drug molecules from DrugBank are reported. The generation of a scaffold network from more than 450,000 NP can be achieved within a single day.
The concept of molecular scaffolds as defining core structures of organic molecules is utilised in many areas of chemistry and cheminformatics, e.g. drug design, chemical classification, or the analysis of high-throughput screening data. Here, we present Scaffold Generator, a comprehensive open library for the generation, handling, and display of molecular scaffolds, scaffold trees and networks. The new library is based on the Chemistry Development Kit (CDK) and highly customisable through multiple settings, e.g. five different structural framework definitions are available. For display of scaffold hierarchies, the open GraphStream Java library is utilised. Performance snapshots with natural products (NP) from the COCONUT database and drug molecules from DrugBank are reported. The generation of a scaffold network from more than 450,000 NP can be achieved within a single day.
The use of molecular string representations for deep learning in chemistry has been steadily increasing in recent years. The complexity of existing string representations, and the difficulty in creating meaningful tokens from them, lead to the development of new string representations for chemical structures. In this study, the translation of chemical structure depictions in the form of bitmap images to corresponding molecular string representations was examined. An analysis of the recently developed DeepSMILES and SELFIES representations in comparison with the most commonly used SMILES representation is presented where the ability to translate image features into string representations with transformer models was specifically tested. The SMILES representation exhibits the best overall performance whereas SELFIES guarantee valid chemical structures. DeepSMILES perform in between SMILES and SELFIES, InChIs are not appropriate for the learning task. All investigations were performed using publicly available datasets and the code used to train and evaluate the models has been made available to the public.
The translation of images of chemical structures into machine-readable representations of the depicted molecules is known as optical chemical structure recognition (OCSR). There has been a lot of progress over the last three decades in this field, but the development of systems for the recognition of complex hand-drawn structure depictions is still at the beginning. Currently, there is no data for the systematic evaluation of OCSR methods on hand-drawn structures available. Here we present DECIMER — Hand-drawn molecule images, a standardised, openly available benchmark dataset of 5088 hand-drawn depictions of diversely picked chemical structures. Every structure depiction in the dataset is mapped to a machine-readable representation of the underlying molecule. The dataset is openly available and published under the CC-BY 4.0 licence which applies very few limitations. We hope that it will contribute to the further development of the field.