Institut für biologische und chemische Informatik
Computational methods for the accurate prediction of protein folding based on amino acid sequences have been researched for decades. The field has been significantly advanced in recent years by deep learning-based approaches, like AlphaFold, RoseTTAFold, or ColabFold. Although these can be used by the scientific community in various, mostly free and open ways, they are not yet widely used by bench scientists in relevant fields such as protein biochemistry or molecular biology, who are often not familiar with software tools such as scripting notebooks, command-line interfaces or cloud computing. In addition, visual inspection functionalities like protein structure displays, structure alignments, and specific protein hotspot analyses are required as a second step to interpret and apply the predicted structures in ongoing research studies.
PySSA (Python rich client for visual protein Sequence to Structure Analysis) is an open Graphical User Interface (GUI) application combining the protein sequence to structure prediction capabilities of ColabFold with the open-source variant of the molecular structure visualisation and analysis system PyMOL to make both available to the scientific end-user. PySSA enables the creation of managed and shareable projects with defined protein structure prediction and corresponding alignment workflows that can be conveniently performed by scientists without specialised computer skills or programming knowledge on their local computers. Thus, PySSA can help make protein structure prediction more accessible for end-users in protein chemistry and molecular biology as well as be used for educational purposes. It is openly available on GitHub, alongside a custom graphical installer executable for the Windows operating system: https://github.com/urban233/PySSA/wiki/Installation-for-Windows-Operating-System.
To demonstrate the capabilities of PySSA, its usage in a protein mutation study on the protein drug Bone Morphogenetic Protein 2 (BMP2) is described: the structure prediction results indicate that the previously reported BMP2-2Hep-7M mutant, which is intended to be less prone to aggregation, does not exhibit significant spatial rearrangements of amino acid residues interacting with the receptor.
An automated pipeline for comprehensive calculation of intermolecular interaction energies based on molecular force-fields using the Tinker molecular modelling package is presented. Starting with non-optimized chemically intuitive monomer structures, the pipeline allows the approximation of global minimum energy monomers and dimers, configuration sampling for various monomer-monomer distances, estimation of coordination numbers by molecular dynamics simulations, and the evaluation of differential pair interaction energies. The latter are used to derive Flory-Huggins parameters and isotropic particle-particle repulsions for Dissipative Particle Dynamics (DPD). The computational results for force fields MM3, MMFF94, OPLS-AA and AMOEBA09 are analyzed with Density Functional Theory (DFT) calculations and DPD simulations for a mixture of the non-ionic polyoxyethylene alkyl ether surfactant C10E4 with water to demonstrate the usefulness of the approach.
Advancements in Hand-Drawn Chemical Structure Recognition through an Enhanced DECIMER Architecture
(2024)
Accurate recognition of hand-drawn chemical structures is crucial for digitising hand-written chemical information found in traditional laboratory notebooks or for facilitating stylus-based structure entry on tablets or smartphones. However, the inherent variability in hand-drawn structures poses challenges for existing Optical Chemical Structure Recognition (OCSR) software. To address this, we present an enhanced Deep lEarning for Chemical ImagE Recognition (DECIMER) architecture that leverages a combination of Convolutional Neural Networks (CNNs) and Transformers to improve the recognition of hand-drawn chemical structures. The model incorporates an EfficientNetV2 CNN encoder that extracts features from hand-drawn images, followed by a Transformer decoder that converts the extracted features into Simplified Molecular Input Line Entry System (SMILES) strings. Our models were trained using synthetic hand-drawn images generated by RanDepict, a tool for depicting chemical structures with different style elements. To evaluate the model's performance, a benchmark was performed using a real-world dataset of hand-drawn chemical structures. The results indicate that our improved DECIMER architecture exhibits a significantly enhanced recognition accuracy compared to other approaches.
The development of deep learning-based optical chemical structure recognition (OCSR) systems has led to a need for datasets of chemical structure depictions. The diversity of the features in the training data is an important factor for the generation of deep learning systems that generalise well and are not overfit to a specific type of input. In the case of chemical structure depictions, these features are defined by the depiction parameters such as bond length, line thickness, label font style and many others. Here we present RanDepict, a toolkit for the creation of diverse sets of chemical structure depictions. The diversity of the image features is generated by making use of all available depiction parameters in the depiction functionalities of the CDK, RDKit, and Indigo. Furthermore, there is the option to enhance and augment the image with features such as curved arrows, chemical labels around the structure, or other kinds of distortions. Using depiction feature fingerprints, RanDepict ensures diversely picked image features. Here, the depiction and augmentation features are summarised in binary vectors and the MaxMin algorithm is used to pick diverse samples out of all valid options. By making all resources described herein publicly available, we hope to contribute to the development of deep learning-based OCSR systems.
The concept of molecular scaffolds as defining core structures of organic molecules is utilised in many areas of chemistry and cheminformatics, e.g. drug design, chemical classification, or the analysis of high-throughput screening data. Here, we present Scaffold Generator, a comprehensive open library for the generation, handling, and display of molecular scaffolds, scaffold trees and networks. The new library is based on the Chemistry Development Kit (CDK) and highly customisable through multiple settings, e.g. five different structural framework definitions are available. For display of scaffold hierarchies, the open GraphStream Java library is utilised. Performance snapshots with natural products (NP) from the COCONUT database and drug molecules from DrugBank are reported. The generation of a scaffold network from more than 450,000 NP can be achieved within a single day.
The translation of images of chemical structures into machine-readable representations of the depicted molecules is known as optical chemical structure recognition (OCSR). There has been a lot of progress over the last three decades in this field, but the development of systems for the recognition of complex hand-drawn structure depictions is still at the beginning. Currently, there is no data for the systematic evaluation of OCSR methods on hand-drawn structures available. Here we present DECIMER - Hand-drawn molecule images, a standardised, openly available benchmark dataset of 5088 hand-drawn depictions of diversely picked chemical structures. Every structure depiction in the dataset is mapped to a machine-readable representation of the underlying molecule. The dataset is openly available and published under the CC-BY 4.0 licence which applies very few limitations. We hope that it will contribute to the further development of the field.