Institut für biologische und chemische Informatik
Refine
Document Type
- Article (21)
- Preprint (10)
- Other (8)
- Conference Proceeding (6)
Keywords
- Dissipative Particle Dynamics (4)
- Deep Learning (3)
- Transformer (3)
- Artificial Intelligence (2)
- DECIMER (2)
- OCSR (2)
- OCSR, Optical Chemical Structure Recognition (2)
- AI (1)
- AlphaFold, ColabFold, PyMOL (1)
- Bone Morphogenetic Protein, BMP, BMP2 (1)
- CDK (1)
- Chemical name translation (1)
- Chemical space (1)
- Chemical structure depictions (1)
- Cheminformatics (1)
- Chemistry Development Kit (1)
- Chemistry Development Kit, CDK, Molecule fragmentation, In silico fragmentation, Scaffolds, Functional groups, Glycosidic moieties, Rich client, Graphical user interface, GUI (1)
- Clustering (1)
- DPD, Dissipative Particle Dynamics (1)
- Deep learning (1)
- Dissipative particle dynamics, DPD, Surfactant, Bilayer, Lamellar, Simulation, Mesoscopic (1)
- Flory-Huggins parameter (1)
- Fragmentation (1)
- Hand-drawn chemical structures (1)
- Hand-drawn images (1)
- IUPAC names (1)
- Intermolecular interaction (1)
- Machine Learning (1)
- Molecular Dynamics (1)
- Molecular Force Field (1)
- Molecular modeling (1)
- Molecule images (1)
- Natural products (1)
- Nonbonding interaction (1)
- Optical Chemical Structure Recognition (1)
- SMILES (1)
- Scaffold (1)
- Scaffold network (1)
- Scaffold tree (1)
- Transformers (1)
- artificial intelligence (1)
- intermolecular interaction (1)
- machine learning (1)
- molecular force field (1)
- optical chemical structure recognition (1)
- protein structure prediction (1)
Naming chemical compounds systematically is a complex task governed by a set of rules established by the International Union of Pure and Applied Chemistry (IUPAC). These rules are universal and widely accepted by chemists worldwide, but their complexity makes it challenging for individuals to consistently apply them accurately. A translation method can be employed to address this challenge. Accurate translation of chemical compounds from SMILES notation into their corresponding IUPAC names is crucial, as it can significantly streamline the laborious process of naming chemical structures. Here, we present STOUT (SMILES-TO-IUPAC-name translator) V2.0, which addresses this challenge by introducing a transformer-based model that translates string representations of chemical structures into IUPAC names. Trained on a dataset of nearly 1 billion SMILES strings and their corresponding IUPAC names, STOUT V2.0 demonstrates exceptional accuracy in generating IUPAC names, even for complex chemical structures. The model's ability to capture intricate patterns and relationships within chemical structures enables it to generate precise and standardised IUPAC names. Deterministic algorithms for systematically naming chemical structures have been available for many years. Also, this work has only been possible through an academic license for OpenEye’s Lexichem software.