Institut für biologische und chemische Informatik
Refine
Document Type
- Article (19)
- Preprint (9)
- Other (8)
- Conference Proceeding (6)
Keywords
- Dissipative Particle Dynamics (4)
- DECIMER (2)
- Deep Learning (2)
- OCSR (2)
- OCSR, Optical Chemical Structure Recognition (2)
- Transformer (2)
- AI (1)
- AlphaFold, ColabFold, PyMOL (1)
- Bone Morphogenetic Protein, BMP, BMP2 (1)
- CDK (1)
Jdpd - An open Java Simulation Kernel for Molecular Fragment Dissipative Particle Dynamics (DPD)
Jdpd is an open Java simulation kernel for Molecular Fragment Dissipative Particle Dynamics (DPD) with parallelizable force calculation, efficient caching options and fast property calculations. It is characterized by an interface and factory-pattern driven design for simple code changes and may help to avoid problems of polyglot programming. Detailed input/output communication, parallelization and process control as well as internal logging capabilities for debugging purposes are supported. The kernel may be utilized in different simulation environments ranging from flexible scripting solutions up to fully integrated “all-in-one” simulation systems like MFsim.
Since Jdpd version 1.6.1.0 Jdpd is available in a (basic) double-precision version and a (derived) single-precision version (= JdpdSP) for all numerical calculations, where the single precision version needs about half the memory of the double precision version.
Jdpd uses the Apache Commons Math and Apache Commons RNG libraries and is published as open source under the GNU General Public License version 3. This repository comprises the Java bytecode libraries (including the Apache Commons Math and RNG libraries), the Javadoc HTML documentation and the Netbeans source code packages including Unit tests.
Jdpd has been described in the scientific literature (the final manuscript 2018 - van den Broek - Jdpd - Final Manucsript.pdf is added to the repository) and used for DPD studies (see references below).
See text file JdpdVersionHistory.txt for a version history with more detailed information.