Filtern
Erscheinungsjahr
Dokumenttyp
- Wissenschaftlicher Artikel (117)
- Video (55)
- Vorlesung (46)
- Konferenzveröffentlichung (44)
- Bericht (13)
- Teil eines Buches (Kapitel) (11)
- Arbeitspapier (10)
- Bachelorarbeit (8)
- Masterarbeit (3)
- Sonstiges (2)
Sprache
- Deutsch (235)
- Englisch (77)
- Französisch (1)
- Mehrsprachig (1)
- Rumänisch (1)
Volltext vorhanden
- ja (315) (entfernen)
Schlagworte
- Robotik (27)
- Flugkörper (18)
- UAV (18)
- Bionik (9)
- 3D Modell (7)
- Akkreditierung (6)
- E-Learning (6)
- Radio-Feature (6)
- Rettungsrobotik (5)
- Virtuelle Hochschule (5)
Institut
- Informatik und Kommunikation (106)
- Wirtschaftsrecht (68)
- Wirtschaft und Informationstechnik Bocholt (43)
- Maschinenbau Bocholt (25)
- Wirtschaft Gelsenkirchen (15)
- Westfälisches Energieinstitut (8)
- Fachbereiche (7)
- Institut Arbeit und Technik (6)
- Institut für Internetsicherheit (6)
- Maschinenbau und Facilities Management (5)
360° and IR- Camera Drone Flight Test: Superimposition of two data sources for Post-Fire Inspection
(2023)
This video highlights a recent flight test carried out in our cutting-edge robotics lab, unveiling the capabilities of our meticulously crafted thermal and 360° camera drone! We've ingeniously upgraded a DJI Avata with a bespoke thermal and 360° camera system. Compact yet powerful, measuring just 18 x 18 x 17 cm, this drone is strategically engineered to effortlessly navigate and deliver crucial thermal and 360° insights concurrently in post-fire or post-explosion environments.
The integration of a specialized thermal and 360° camera system enables the simultaneous capture of both data sources during a single flight. This groundbreaking approach not only reduces inspection time by half but also facilitates the seamless superimposition of thermal and 360° videos for comprehensive analysis and interpretation.
360° Camera at a small UAV
(2021)
Fruits (follicles) of Hakea salicifolia and Hakea sericea (Proteaceae) are characterised by pronounced lignification and open via a ventral suture and the dorsal side. The opening along both sides is unique within the Proteaceae. Both serotinous species are obligate seeders, whose spreading benefits from bush fire events. The different tissues and the course of the vascular bundles must allow the opening mechanism. While their 2D-arrangements are known to some extent from light-microscopy images of cross-sections, this work presents their three-dimensional structures and discusses their contribution to the opening of Hakea fruits. For this purpose, 3D greyscale images, reconstructed from µCT-projection data of both fruits are segmented, assisted by a deep learning algorithm (AI algorithm). 3D renderings from these segmentations show strongly interconnected vascular bundles that build a double-dome shaped network in each valve of H. salicifolia and a dome shaped honeycomb-structure in each valve of H. sericea. However, the vascular bundles of both species show no interconnection between the two lateral valves of the fruit but leave gaps for predetermined fracture tissues on the ventral and dorsal side. The opening of the fruits after a fire or after separation from the mother plant can be explained by the anisotropic shrinkage in the two valves of the fruit.
This video shows a model computed from 124 images taken at the Tjex 2015 of the trade project (www.tradr-project.eu). The images were acquired by walking around the object and reconstruct the structure with VisualSfm software.
From the 360° images of the former video (
• German rescue robotic center captured... ) we now generate the 3D point cloud. The UAV needs 3 minutes to capture the outdoor scenario and the hall from inside and outside. The 3D point cloud generation is 5x slower than the video. It uses a VSLAM algorithm to localize the k-frames (green) and with 3 k-frames it use a 360° PatchMatch algorithm implemented at a NVIDIA graphic card (CUDA) to calculated the dense point clouds.The hall ist about 70 x 20 meters.
The video shows a snapshot of a 16 minute flight of a DJI Phantom 3 professional over the Schloss Birlinghoven at Sankt Augustin, Germany. The castle is located at the Fraunhofer Campus at Sankt Augustin. The 3D model is generated out of 400 key frames of the 4k video which are cut out with ffmpeg. The work is part of an evaluation in the Tradr Project (www.tradr-project.eu)
The concept of “Internationalisation at Home“ has gained momentum with the increasing digitalization of education and limitations on mobility. Collaborative Online International Learning (COIL) is an innovative, cost-effective instructional method that promotes intercul-tural learning through online collaboration between faculty and students from different countries or locations. The benefits of using COIL courses have been widely recognized, with learners developing intercultural competencies, digital skills, international education experi-ence, and global awareness.
However, multicultural communication in project environments can be complex and demand awareness of cultural variations . The creation and development of effective cross-cultural collectivism, trust, communication, and empathy in leadership is an important ingredient for remote project collaborations success. This is an area that has been least explored in re-search on communication in virtual teams.
The GIPE projects are mainly carried out as so-called Collaborative Online International Learning (COIL) events. However, to gain a “real world“ experience abroad in an intercultural team, students from all partner universities can participate in the Spring School being held for two weeks in Germany and the Germany students present and hand-over the results in the country of the partner university. The main objective of this research was to examine the experiences of students participating in the GIPE project and to evaluate the effectiveness of the project in enhancing intercultural competencies and fostering collaboration among stu-dents from different continents. This paper will also explore the implications of the GIPE project for Education 2.0 considering the COVID-19 pandemic and the future of education delivery and administration transformation.