Refine
Document Type
- Conference Proceeding (2)
- Article (1)
Keywords
- consent banner (1)
- cookie banner (1)
- cookies (1)
- privacy (1)
- web measurement (1)
Web measurement studies can shed light on not yet fully understood phenomena and thus are essential for analyzing how the modern Web works. This often requires building new and adjustinng existing crawling setups, which has led to a wide variety of analysis tools for different (but related) aspects. If these efforts are not sufficiently documented, the reproducibility and replicability of the measurements may suffer—two properties that are crucial to sustainable research. In this paper, we survey 117 recent research papers to derive best practices for Web-based measurement studies and specify criteria that need to be met in practice. When applying these criteria to the surveyed papers, we find that the experimental setup and other aspects essential to reproducing and replicating results are often missing. We underline the criticality of this finding by performing a large-scale Web measurement study on 4.5 million pages with 24 different measurement setups to demonstrate the influence of the individual criteria. Our experiments show that slight differences in the experimental setup directly affect the overall results and must be documented accurately and carefully.
Measurement studies are essential for research and industry alike to understand the Web’s inner workings better and help quantify specific phenomena. Performing such studies is demanding due to the dynamic nature and size of the Web. An experiment’s careful design and setup are complex, and many factors might affect the results. However, while several works have independently observed differences in
the outcome of an experiment (e.g., the number of observed trackers) based on the measurement setup, it is unclear what causes such deviations. This work investigates the reasons for these differences by visiting 1.7M webpages with five different measurement setups. Based on this, we build ‘dependency trees’ for each page and cross-compare the nodes in the trees. The results show that the measured trees differ considerably, that the cause of differences can be attributed to specific nodes, and that even identical measurement setups can produce different results.
Cookie notices (or cookie banners) are a popular mechanism for websites to provide (European) Internet users a tool to choose which cookies the site may set. Banner implementations range from merely providing information that a site uses cookies over offering the choice to accepting or denying all cookies to allowing fine-grained control of cookie usage. Users frequently get annoyed by the banner’s pervasiveness as they interrupt “natural” browsing on the Web. As a remedy, different browser extensions have been developed to automate the interaction with cookie banners.
In this work, we perform a large-scale measurement study comparing the effectiveness of extensions for “cookie banner interaction.” We configured the extensions to express different privacy choices (e.g., accepting all cookies, accepting functional cookies, or rejecting all cookies) to understand their capabilities to execute a user’s preferences. The results show statistically significant differences in which cookies are set, how many of them are set, and which types are set—even for extensions that aim to implement the same cookie choice. Extensions for “cookie banner interaction” can effectively reduce the number of set cookies compared to no interaction with the banners. However, all extensions increase the tracking requests significantly except when rejecting all cookies.