Refine
Document Type
- Conference Proceeding (5)
- Article (3)
- Part of a Book (1)
Radiotherapy (RT) treatment planning is based on computed tomography (CT) images and traditionally uses the conventional Hounsfield unit (CHU) range. This HU range is suited for human tissue but inappropriate for metallic materials. To guarantee safety of patient carrying implants precise HU quantification is beneficial for accurate dose calculations in planning software. Some modern CT systems offer an extended HU range (EHU). This study focuses the suitability of these two HU ranges for the quantification of metallic components of active implantable medical devices (AIMD). CT acquisitions of various metallic and non-metallic materials aligned in a water phantom were investigated. From our acquisitions we calculated that materials with mass-density ρ > 3.0 g/cm3 cannot be represented in the CHU range. For these materials the EHU range could be used for accurate HU quantification. Since the EHU range does not effect the HU values for materials ρ < 3.0 g/cm3, it can be used as a standard for RT treatment planning for patient with and without implants.
We report on the suitability of two different ranges of Hounsfield units (HU) in computed tomography (CT) for the quantification of metallic components of active implantable medical devices (AIMD). The conventional Hounsfield units (CHU) range, which is traditionally used in radiology, is well suited for tissue but suspected inappropriate for metallic materials. Precise HU values are notably beneficial in radiotherapy (RT) for accurate dose calculations, thus for the safety of patient carrying implants. Some of today’s CT machines offers an extended Hounsfield units (EHU) range. This study presents CT acquisitions of a water phantom containing various metallic discs and an implantable-cardioverter defibrillator (IPG). We show that the comparison of HU values at EHU and CHU ranges clearly reveals the superiority and accuracy of EHU. Some geometrical discrepancies perpendicular to slices are observed. At EHU metal artifact reduction algorithms (MAR) underestimates HU values rendering MAR potentially inappropriate for RT.
The purpose of this work was to develop and investigate a radiofrequency (RF) coil to perform image studies on small animals using the 7T magnetic resonance imaging (MRI) system, installed in the imaging platform in the autopsy room (Portuguese acronym PISA), at the University of Sao Paulo, Brazil, which is the unique 7T MRI scanner installed in South America. Due to a high demand to create new specific coils for this 7T system, it is necessary to carefully assess the distribution of electromagnetic (EM) fields generated by the coils and evaluate the patient/object safety during MRI procedures. To achieve this goal 3D numerical methods were used to design and analyse a 8-rungs transmit/receive linearly driven birdcage coil for small animals. Calculated magnetic field (B 1) distributions generated by the coil were crosschecked with measured results, indicating good confidence in the simulated results.