Technik
Refine
Document Type
- Conference Proceeding (2)
- Article (1)
- Contribution to a Periodical (1)
Aufgrund der Energiewende und den steigenden Anforderungen an die technische Gebäudeausrüstung gewinnt der Betrieb von Wärmepumpen in Gebäuden immer mehr an Bedeutung. Inzwischen existiert eine Vielzahl an Wärmepumpen-Systemen, die unterschiedliche Vor- und Nachteile sowie Einsatzmöglichkeiten aufweisen. Sofern die Installation einer Wärmepumpe für den Wohngebäudesektor in Betracht gezogen wird, muss eruiert werden, welches System sowohl ökologisch als auch ökonomisch für das Bauvorhaben am sinnvollsten ist. Hierfür wurde eine Bewertungstool entwickelt, das den Einsatz der unterschiedlichen Wärmepumpensysteme bewertet und auch Nutzern mit wenig Expertise eine Entscheidungshilfe ermöglicht. Für eine möglichst ganzheitliche Betrachtung können verschiedene Szenarien mit Hilfe des Bewertungstools überprüft werden. Hierzu können Indikatoren wie Standortdaten, Gebäudedaten, Parameter für die Trinkwassererwärmung, die Systemtemperaturen der Heizung und die Betriebsweise der Wärmepumpe im Tool variiert werden. Die Ergebnisse des Bewertungstools zeigen, wie die unterschiedlichen Nutzungsanforderungen sich auf die Jahresarbeitszahl und den Energiebedarf auswirken. Zusätzlich werden Investitions- und Verbrauchskosten für die unterschiedlichen Szenarien abgeschätzt und berechnet. Bei der ökologischen Bewertung wird der Fokus der Betrachtung auf den TEWI-Wert gelegt, um den Einfluss von verschiedener Kältemittel im Lebenszyklus der Wärmepumpe zu berücksichtigen.
Nachhaltigkeit von intelligenten Gebäuden - Ein Blick auf die Gesetzgebungen und Praxismöglichkeiten
(2023)
Gebäude sind durch ihre Herstellung und den Betrieb für einen erheblichen Teil der CO2-Emissionen in Europa verantwortlich. Die EU und Deutschland wollen durch milliardenschwere Maßnahmenpakete diese Emissionen bis zum Jahr 2045 (Deutschland) bzw. 2050 (EU) auf null reduzieren. Neben der Gebäudehülle als maßgeblicher Faktor für die Wärmebilanz zum Heizen und Kühlen spielt die Gebäudeautomation eine wichtige Rolle. Wie Gebäude intelligenter und smarter werden und wie sich das auf die Energieeffizienz auswirkt, soll im Folgenden betrachtet werden.
Zentrale Raumlufttechnische Anlagen (RLT-Anlagen) sind für Betriebszeiten von fünfzehn und mehr Jahren konzipiert. Nicht selten werden die Geräte auch nach 25 Jahren Dank Retrofit weiterbetrieben. Unberücksichtigt bleibt dabei, ob die zukünftigen, klimatischen Bedingungen noch der Auslegung entsprechen. Zur Überprüfung der klimatischen Änderungen können sogenannte Testreferenzjahre (TRY – Test Reference Year) genutzt werden. Diese basieren für die heutige Auslegung auf den lokalen, stündlichen Wetterbedingungen im Bezugsjahr 2012 und zusätzlich auf modellbasierten Wetterdaten für das Bezugsjahr 2045.
Das Zentralluftgerät einer Krankenhaus-Intensivstation wurde für die 15 Wetter¬stationen der VDI 4710, Blatt 3 in Deutschland auf die Leistungsanforderungen von heute und für das Jahr 2045 untersucht. Zusätzlich wurden für den Standort Berlin die aktuellen Wetteraufzeichnungen im Sommer 2020 betrachtet. Daraus lassen sich Rückschlüsse ziehen, wie sich städtische Wärmeinseln (UHI – Urban Heat Islands) zukünftig auf den Energie- und Leistungsbedarf zur Gebäudeklimatisierung auswirken werden.
Die Auswirkungen auf die Wärme- und Kältespitzenleistung sowie der kumulierte Energiebedarf werden genauso analysiert wie der Befeuchtungsbedarf. Hieraus lassen sich die potenziellen Leistungsreserven abschätzen und die Klimaresilienz der Anlagentechnik bewerten.
Air Handling units (AHU) are designed to guarantee a high indoor air quality for any time and outdoor condition all over the year. To do so, the AHU removes particle matter like dust or pollen and adapts the thermophysical properties of air to the desired, seasonal indoor comfort conditions. AHU have a robust design and thus operate for more than fifteen years, sometimes even for decades. An AHU designed today must consider and anticipate the change of user needs as well as outdoor air conditions for the next twenty years. To anticipate the outdoor air condition of coming decades, scientific models exist, which allow the design of peak performance and capacities of the air treatment components. It is most likely, that the ongoing climate change will lead to higher temperatures as well as higher humidity, while the comfort zone of human beings will remain at today’s values. Next to the impact of global warming with average rise of mean air temperature local effects will influence the operation of AHU. On effect investigated here is the steep temperature increase in city centres called urban heat islands. Heating and cooling capacities as well as water consumption for humidification are investigated for a reference AHU for fifteen regional locations in Germany. These regions represent all climate zones within the country. Additionally, the urban heat island effect was investigated for Berlin Alexanderplatz compared a rural area close by. The AHU was chosen to operate in an intensive care unit of a hospital. The set-up leads to 24/7 operation with 8760 hours per year. The article presents the modelling of current and future weather data as well as the unit set up. The calculated hourly performance and capacity parameters for current (reference year 2012) and future weather data (reference year 2045) yield energy consumption and peak loads of the unit for heating, cooling and humidification. The results are displayed by relative comparisons of each performance value.