The 10 most recently published documents
Um CO2-frei, mit erneuerbaren Technologien, Energie umzuwandeln, zu speichern und Wasserstoff zu produzieren, bedarf es einer Technologie, welche zu hoher Leistungsdichte, Flexibilität und Effizienz fähig ist. Die Polymerelektrolytmembran-(PEM) Wasser-Elektrolyse besitzt das Potential alle diese Attribute in sich zu vereinen, weswegen sie eine Schlüsseltechnologie bei dem Umstieg auf erneuerbare Energien darstellt. Die aktuellen hohen Beladungen der Elektroden mit Katalysatormaterial für die Sauerstoffentwicklungsreaktion (OER) wie Iridium und die bisher noch ungenügend erforschten Alterungsmechanismen dieser über eine längere Nutzdauer, sind bisher die größten Herausforderungen für die großflächige industrielle Nutzung dieser Systeme. Mit diesem Hintergrund stellt sich diese Arbeit der Herausforderung die untersuchten PEM-Anoden mit reduzierter Beladung, hinsichtlich ihrer Stabilität und Alterungsmechanismen zu charakterisieren und den ersten Schritt in Richtung eines Degradationsprotokolls zu machen, um solche Elektroden künftig zu untersuchen. In der vorgegangenen Arbeit, aus welcher die hier untersuchten Proben stammen, wurden Elektroden hergestellt, indem auf ein Titansubstrat eine Supportschicht mit unterstöchiometrischem Titanoxid eingesintert wurde, auf welchem wiederum das Iridium galvanisch gepulst abgeschieden wurde. Die Beladung mit Katalysatormaterial war hier geringer als der der Stand der Technik, doch die katalytische Aktivität wurde durch die optimierte Elektrodenarchitektur erhöht. In dieser Arbeit wurden die Elektroden einem elektrochemischen Degradationsprotokoll unterzogen, welches sich aus Cyclovoltametrie (CV) gefolgt von Chronopotentiometrie (CP) und Chronoamperometrie, mit wechselnden Potentialen, zusammensetzt. Der dabei verwendete Elektrolyt wurde ebenfalls durch Filtration und Titration auf Zerfallsprodukte der Elektroden hin untersucht. Nach erfolgter Degradation wurden die Elektroden auf topografische Änderungen, mittels Rasterelektronenmikroskop (REM), Änderungen der Kristallinität, mittels Röntgendiffraktometrie (XRD) und Änderungen der Elementenkonzentration durch Röntgenfluoreszenzspektroskopie (XRF) hin untersucht.
Diese Arbeit befasst sich mit der Entwicklung einer Titanträgerlage, die anschließend als Supportstruktur für den Anodenkatalysator eines PEM-Elektrolyseurs genutzt werden soll, sowie mit der Parametrisierung der hierfür genutzten Lasersinteranlage.
Dafür wird 1 mg cm-2 unterstöchiometrisches Titanoxid (TiOx) auf eine poröse Titantransportschicht gesprüht und anschließend mit einem gepulsten Laser in Argonatmosphäre gesintert, um beide Materialien zu verbinden und die Oberfläche gezielt verändern zu können. Da die benötigte Menge des unterstöchiometrischen TiOx-Pulvers nicht abschätzbar war, wurden die Arbeiten mit kommerziell verfügbarem Titandioxid-(TiOx) Pulver durchgeführt.
Im ersten Schritt wurde ein bestehender Sprühprozess optimiert. Der Fokus lag dabei auf einem gleichmäßigen Sprühergebnis und dem reproduzierbaren Erreichen einer vorgegebenen Beladung. Die Optimierung wurde auf Titanblech und auf porösen Titansubstraten durchgeführt.
Anschließend wurde das verwendetet Lasersystem, das einen luftgekühlten Neodymdotierten Yttrium-Aluminium-Granat (Nd:YAG)-Festkörperlaser mit einer Wellenlänge von 355 nm nutzt, parametrisiert. Das Erreichen der Bearbeitungsschwelle und die maximalen Spotgrößen bei verschiedenen Diodenströmen wurden untersucht. Anschließend wurde die Frequenz erhöht, dies führte zu geringeren Einzelpulsenergien und daher zu neuen Bearbeitungsschwellen bei den unterschiedlichen Diodenströmen. Die Variierung des Vorschubs führt zu einer Änderung der eingebrachten Energie pro Fläche und wirkt sich direkt auf die Sinterdauer aus. Als letztes wurde der Einfluss des Linienabstandes untersucht. Wenn der Linienabstand unterhalb des Wertes gehalten wird, ab dem eine streifenfreie Oberfläche entsteht, wirkt die Verkleinerung des Linienabstandes wie die Verringerung des Vorschubs.
Um grünen Wasserstoff effizient als Energieträger nutzen zu können, ist die Entwicklung von haltbaren und aktiven Katalysatorschichten für Brennstoffzellen und Elektrolyseuren von äußerster Wichtigkeit. Eine große Herausforderung ist, dass konventionelle C/Pt-Katalysatoren eine starke Korrosionsreaktion durchlaufen und mit hohen Kosten verknüpft sind. Weswegen alternative Kohlenstoffträger wie Kohlenstoffnanofaser-Materialien entwickelt wurden, welche eine längere Haltbarkeit aufweisen können. In dieser Arbeit wurde die Aufbringung von Pt- und Ir-Nanopartikeln auf gesponnene Kohlenstoffnanofaser-Vliese untersucht. Es wurden erstmals in einer Flüssigkeit laserablatierte Pt-Nanoartikel mit einem PAN-Vlies versponnen oder in einem zweiten Syntheseverfahren auf ein Vlies aufgesprüht. Diese Methoden wurden mit der gepulsten galvanischen Abscheidung von Pt auf einem PAN-Vlies verglichen. Die Vliese wurden bezüglich ihres Graphitisierungsgrades, ihrer Partikelverteilung und ihrer Beständigkeit untersucht, einschließlich des Einflusses der Karbonisierungstemperatur. Die Raman- und XRF-Messungen ergaben eine Erhöhung des Graphitisierungsgrades und eine Abnahme der PAN-Reste mit dem Anstieg der Karbonisierungstemperatur. Elektrochemische Messungen und REM-Aufnahmen bestätigten die erfolgreiche Synthese von langzeitstabilen CNF-Vliesen mit einer hohen massenspezifischen aktiven Platinoberfläche und einer guten Nanopartikelverteilung. Diese Ergebnisse tragen zur Entwicklung von ökologischen und ökonomischen Katalysatorschichten bei.
Ni-based alloys are among the materials of choice in developing high-quality coatings for ambient and high temperature applications that require protection against intense wear and corrosion. The current study aims to develop and characterize NiCrBSi coatings with high wear resistance and improved adhesion to the substrate. Starting with nickel-based feedstock powders, thermally sprayed coatings were initially fabricated. Prior to deposition, the powders were characterized in terms of microstructure, particle size, chemical composition, flowability, and density. For comparison, three types of powders with different chemical compositions and characteristics were deposited onto a 1.7227 tempered steel substrate using oxyacetylene flame spraying, and subsequently, the coatings were inductively remelted. Ball-on-disc sliding wear testing was chosen to investigate the tribological properties of both the as-sprayed and induction-remelted coatings. The results reveal that, in the case of as-sprayed coatings, the main wear mechanisms were abrasive, independent of powder chemical composition, and correlated with intense wear losses due to the poor intersplat cohesion typical of flame-sprayed coatings. The remelting treatment improved the performance of the coatings in terms of wear compared to that of the as-sprayed ones, and the density and lower porosity achieved during the induction post-treatment had a significant positive role in this behavior.
Without proper post-processing (often using flame, furnace, laser remelting, and induction) or reinforcements’ addition, Ni-based flame-sprayed coatings generally manifest moderate adhesion to the substrate, high porosity, unmelted particles, undesirable oxides, or weak wear resistance and mechanical properties. The current research aimed to investigate the addition of ZrO2 as reinforcement to the self-fluxing alloy coatings. Mechanically mixed NiCrBSi-ZrO2 powders were thermally sprayed onto an industrially relevant high-grade steel. After thermal spraying, the samples were differently post-processed with a flame gun and with a vacuum furnace, respectively. Scanning electron microscopy showed a porosity reduction for the vacuum-heat-treated samples compared to that of the flame-post-processed ones. X-ray diffraction measurements showed differences in the main peaks of the patterns for the thermal processed samples compared to the as-sprayed ones, these having a direct influence on the mechanical behavior of the coatings. Although a slight microhardness decrease was observed in the case of vacuum-remelted samples, the overall low porosity and the phase differences helped the coating to perform better during wear-resistance testing, realized using a ball-on-disk arrangement, compared to the as-sprayed reference samples.
Among the FDM process variables, one of the less addressed in previous research is the filament color. Moreover, if not explicitly targeted, the filament color is usually not even mentioned.
Aiming to point out if, and to what extent, the color of the PLA filaments influences the dimensional precision and the mechanical strength of FDM prints, the authors of the present research carried out experiments on tensile specimens. The variable parameters were the layer height (0.05 mm, 0.10 mm, 0.15 mm, 0.20 mm) and the material color (natural, black, red, grey). The experimental results clearly showed that the filament color is an influential factor for the dimensional accuracy as well as for the tensile strength of the FDM printed PLA parts. Moreover, the two way ANOVA test performed revealed that the strongest effect on the tensile strength was exerted by the PLA color (2 = 97.3%), followed by the layer height (2 = 85.5%) and the interaction between the PLA color and the layer height (2 = 80.0%). Under the same printing conditions, the best dimensional accuracy was ensured by the black PLA (0.17% width deviations, respectively 5.48% height deviations), whilst the grey PLA showed the highest ultimate tensile strength values (between 57.10 MPa and 59.82 MPa).
Impact of cobalt content and grain growth inhibitors in laser-based powder bed fusion of WC-Co
(2022)
Processing of tungsten carbide‑cobalt (WC-Co) by laser-based powder bed fusion (PBF-LB) can result in characteristic microstructure defects such as cracks, pores, undesired phases and tungsten carbide (WC) grain growth, due to the heterogeneous energy input and the high thermal gradients. Besides the processing conditions, the material properties are affected by the initial powder characteristics. In this paper, the impact of powder composition on microstructure, phase formation and mechanical properties in PBF-LB of WC-Co is studied.
Powders with different cobalt contents from 12 wt.-% to 25 wt.-% are tested under variation of the laser parameters.
Furthermore, the impact of vanadium carbide (VC) and chromium (Cr) additives is investigated. Both are known as grain growth inhibitors for conventional sintering processes. The experiments are conducted at a pre-heating temperature of around 800 ◦C to prevent crack formation in the samples. Increasing laser energy input reduces porosity but leads to severe embrittlement for low cobalt content and to abnormal WC grain growth for high cobalt content. It is found that interparticular porosity at low laser energy is more severe for low cobalt content due to poor wetting of the liquid phase. Maximum bending strength of σB > 1200 MPa and Vickers hardness of approx. 1000 HV3 can be measured for samples generated from WC-Co 83/17 powder with medium laser energy input. The addition of V and Cr leads to increased formation of additional phases such as Co3W3C, Co3V and Cr23C6 and to increased lateral and multi-laminar growth of the WC grains. In contrast to conventional sintering, a grain growth inhibiting effect of V and Cr in the laser molten microstructure is not achieved.
Among all additive manufacturing processes, Directed Energy Deposition-Arc (DED-Arc) shows significantly shorter production times and is particularly suitable for large-volume components of simple to medium complexity. To exploit the full potential of this process, the microstructural, mechanical and corrosion behavior have to be studied. High stickout distances lead to a large offset, which leads to an instable electric arc and thus defects such as lack of fusion. Since corrosion preferentially occurs at such defects, the main objective of this work is to investigate the influence of the stickout distance on the corrosion
behavior and microstructure of stainless steel manufactured by DED-Arc.
Within the heterogenous structure of the manufactured samples lack of fusion defects were detected. The quantity of such defects was reduced by applying a shorter stickout distance. The corrosion behavior of the additively manufactured specimens was investigated by means of potentiodynamic polarization measurements. The semi-logarithmic current density potential curves showed a similar course and thus similar corrosion resistance like that of the conventionally forged sample. The polarization curve of the reference material shows numerous current peaks, both in the anodic and cathodic regions. This metastable behavior is induced by the presence of manganese sulfides. On the sample surface a local attack by pitting corrosion was identified.
In this study, the characteristics of HVOF sprayed WC/Co-Cr and WC/Cr3C2/Ni coatings were investigated in correlation with the variation of the powder feed rate. For this purpose, the mass flow was adjusted to four different levels. The other process parameters were all kept constant. The morphological and mechanical properties as well as the electrochemical corrosion behaviour were investigated and associated with the achieved microstructure.
Both scanning electron microscopy and confocal laser scanning microscopical images of the cross sections demonstrated a good correlation between the selected powder feed rate and the degree of internal porosity produced, which can be attributed to the deposition process. The coatings which fulfilled the requirements of the pre-qualification step were selected for further hardness measurements, tribological tests and electrochemical corrosion measurements in a 3.5 wt% NaCl aqueous solution.
It was found that the powder feed rate strongly influenced the characteristics of the HVOF-sprayed cermet coatings. The tendency to crack formation, especially at the interface coating/substrate, was lower for the samples coated with a lower mass flow rate. These studies have shown that the applied powder feed rates had an important influence on the coatings microstructure and implicitly on the sliding wear behavior respectively on the electrochemical corrosion resistance of the investigated cermet coatings.
Even though we live in a period when the word digitization is prevalent in many social areas, the COVID-19 pandemic has divided mankind into two main categories: some people have seen this crisis as an opportunity to move the activities online and, furthermore, to accelerate digitization in as many areas as possible, while others have been reluctant, keeping their preferences for face-to-face activities. The current work presents the results of an analysis on 249 students from 11 engineering faculties. The study aims to identify the impact of the COVID-19 pandemic on students’ educational experiences when switching from face-to-face to online education during a public health emergency or COVID 19-related state of alert. The overall conclusion was that, although the pandemic has brought adverse consequences on the health and life quality of many people, the challenges that humankind has been subjected to have led to personal and professional development and have opened up new perspectives for carrying out the everyday activities.