Refine
Year of publication
Document Type
- video (60)
- Conference Proceeding (45)
- Part of a Book (39)
- Article (32)
- Course Material (13)
- Book (11)
- Lecture (7)
- Contribution to a Periodical (4)
- Other (3)
- Master's Thesis (2)
Keywords
- Robotik (30)
- Flugkörper (21)
- UAV (21)
- Journalismus (15)
- Rettungsrobotik (8)
- 3D Modell (7)
- Akkreditierung (7)
- E-Learning (7)
- Marketing (6)
- Radio-Feature (6)
Institute
- Informatik und Kommunikation (220) (remove)
In the realm of digital situational awareness during disaster situations, accurate digital representations,
like 3D models, play an indispensable role. To ensure the
safety of rescue teams, robotic platforms are often deployed
to generate these models. In this paper, we introduce an
innovative approach that synergizes the capabilities of compact Unmaned Arial Vehicles (UAVs), smaller than 30 cm, equipped with 360° cameras and the advances of Neural Radiance Fields (NeRFs). A NeRF, a specialized neural network, can deduce a 3D representation of any scene using 2D images and then synthesize it from various angles upon request. This method is especially tailored for urban environments which have experienced significant destruction, where the structural integrity of buildings is compromised to the point of barring entry—commonly observed post-earthquakes and after severe fires. We have tested our approach through recent post-fire scenario, underlining the efficacy of NeRFs even in challenging outdoor environments characterized by water, snow, varying light conditions, and reflective surfaces.
In this paper, we present a method for detecting objects of interest, including cars, humans, and fire, in aerial images captured by unmanned aerial vehicles (UAVs) usually during vegetation fires. To achieve this, we use artificial neural networks and create a dataset for supervised learning. We accomplish the assisted labeling of the dataset through the implementation of an object detection pipeline that combines classic image processing techniques with pretrained neural networks. In addition, we develop a data augmentation pipeline to augment the dataset with utomatically labeled images. Finally, we evaluate the performance of different neural networks.
Problem: A group of robots, called a swarm, is placed in an unknown environment and is supposed to explore it independently. The goal of the exploration is the creation of a common map.
Implementation
- Equipping six Kobuki robots with appropriate sensor technology, a large battery, a router and the Jetson board
- Setup of the Jetson-Boards with self-made ROS2 nodes and the set up mesh network
- Writing of launch files for the common start of all functions
- Reinforcement learning is used to train an AI that controls the swarm by selecting points for the robots to approach and navigating to them and navigating them there.
- Setting up a responsive website using Angular and the Bootstrap
Framework.
360° and IR- Camera Drone Flight Test: Superimposition of two data sources for Post-Fire Inspection
(2023)
This video highlights a recent flight test carried out in our cutting-edge robotics lab, unveiling the capabilities of our meticulously crafted thermal and 360° camera drone! We've ingeniously upgraded a DJI Avata with a bespoke thermal and 360° camera system. Compact yet powerful, measuring just 18 x 18 x 17 cm, this drone is strategically engineered to effortlessly navigate and deliver crucial thermal and 360° insights concurrently in post-fire or post-explosion environments.
The integration of a specialized thermal and 360° camera system enables the simultaneous capture of both data sources during a single flight. This groundbreaking approach not only reduces inspection time by half but also facilitates the seamless superimposition of thermal and 360° videos for comprehensive analysis and interpretation.
The dataset is used for 3D environment modeling, i.e. for the generation of dense 3D point clouds and 3D models with PatchMatch algorithm and neural networks. Difficult for the modeling algorithm are the reflections of rain, water and snow, as well as windows and vehicle surface. In addition, lighting conditions are constantly changing.
At the integration sprint of the E-DRZ consortium in march 2023 we improve the information captured by the human spotter (of the fire brigade) by extending him through a 360° drone i.e. the DJI Avata with an Insta360 on top of it. The UAV needs 3 minutes to capture the outdoor scenario and the hall from inside and outside. The hall ist about 70 x 20 meters. When the drone is landed we have all information in 360° degree at 5.7k as you can see it in the video. Furthermore it is a perfect documentation of the deployment scenario. In the next video we will show how to spatial localize the 360° video and how to generate a 3D point cloud from it.
At the integration sprint of the E-DRZ consortium in march 2023 we improve the information captured by the human spotter (of the fire brigade) by extending him through a 360° drone. The UAV needs 3 minutes to capture the outdoor scenario and the hall from inside and outside. The hall ist about 70 x 20 meters. When the drone is landed we have all information in 360° degree at 5.7k as you can see it in the video. Furthermore it is a perfect documentation of the deployment scenario. In the next video we will show how to spatial localize the 360° video and how to generate a 3D point cloud from it.
Gaussian Splatting: 3D Reconstruction of a Chemical Company After a Tank Explosion in Kempen 8/2023
(2023)
The video showcases a 3D model of a chemical company following a tank explosion that occurred on August 17, 2023, in Kempen computed with the gaussian splatting algorithm. Captured by a compact mini drone measuring 18cm x 18cm and equipped with a 360° camera, these images offer an intricate perspective of the aftermath. The computation need 29 minutes and uses 2770 images (~350 equirectangular images). After a comprehensive aerial survey and inspection of the 360° images taken within the facility, authorities confirmed that it was safe for the evacuated residents to return to their homes. See also:
https://www1.wdr.de/fernsehen/aktuelle-stunde/alle-videos/video-grosser-chemieunfall-in-kempen-100.html
ARGUS is a tool for the systematic acquisition, documentation and evaluation of drone flights in rescue operations. In addition to the very fast generation of RGB and IR orthophotos, a trained AI can automatically detect fire, people and cars in the images captured by the drones. The video gives a short introduction to the Aerial Rescue and Geospatial Utility System -- ARGUS
Check out our Github repository under
https://github.com/RoblabWh/argus/
You can find the dataset on kaggle under
https://www.kaggle.com/datasets/julienmeine/rescue-object-detection