Refine
Year of publication
Document Type
- Conference Proceeding (28)
- Article (22)
- Part of a Book (3)
- Doctoral Thesis (1)
- Report (1)
Keywords
- Polymer-Elektrolytmembran-Brennstoffzelle (4)
- Electrodeposition (2)
- hydraulic compression (2)
- modular stack design (2)
- water electrolysis (2)
- carbon nanofibers, platinum electrodeposition, ele ctrochemical surface area (1)
- AEM-Electrolysis (1)
- Catalysis (1)
- Electrolysis (1)
- Elektrodenvorbereitung (1)
Institute
Um die Wasserstofftechnik in Zukunft wirtschaftlich und damit kommerziell am Markt verfügbar werden zu lassen, sind heute noch immer große Forschungs- und Entwicklungsanstrengungen notwendig. Dabei erfordert die Entwicklung von optimierten Komponenten wie beispielsweise der Membran-Elektroden-Einheit (MEA – engl. Membrane Electrode Assembly) für Brennstoffzellen sowie Elektrolyseure reproduzierbare und homogene Prüfbedingungen. Für diesen Zweck ist ein Prüfsystem auf Basis eines von der Westfälischen Hochschule (WHS) patentierten modularen Stackkonzepts mit hydraulischer Verpressung entworfen und realisiert worden. Mit dem hier vorgestellten System ist es möglich, auf Einzelzellenbasis mehrere Proben zum gleichen Zeitpunkt unter identischen Umgebungsbedingungen auf ihre Charakteristik hin zu untersuchen.
The membrane electrode assemblies (MEA) for polymer electrolyte membrane fuel cells (PEMFC) developed at the Westphalian Energy Institute are based on oxygen plasma activated carbon nanotubes (CNT) doped with platinum particles. For electrode preparation an ink is used containing the activated CNTs as well as hydrophobic and hydrophilic material in solved form. After this ink is sprayed onto a graphitic substrate platinum particles are deposited by pulse plating method, where the plasma activation enhances CNT dispersibility as well as platinum deposition. This materials mixture is structured in nanoscale with the aim to increase the catalyst particles’ specific surface. For low reactance at operation, homogeneous compression of the MEA’s layers is necessary within a PEMFC. A novel stack architecture for electrochemical cells, especially PEMFC as well as PEM electrolysers, has been developed in order to achieve ideal cell operation conditions. Single cells of such a stack are inserted into flexible slots that are surrounded by a hydraulic medium which is pressurised during operation in order to achieve an even compression and cooling of the stack’s cells. With this stack design it has been possible to construct a test facility for simultaneous characterisation of several MEA samples. As compression and temperature conditions of every single sample are the same, the effects of e.g. different electrode configurations can be investigated with the novel test system.
To further increase platinum utilisation in PEM fuel cells CNFs are investigated as catalyst support material due to the CNF’s high specific surface area. Furthermore, CNFs provide suitable properties concerning corrosion resistance as well as electrical conductivity in contrast to conventional carbon supports.
This work presents the results of an electrode preparation procedure based on O2 plasma activated CNFs. The plasma treatment leads to CNF dispersibility in alcohol/water for a spray coating process. Furthermore, O2 plasma activation enhances metal deposition on the CNF’s surface. Pulse plating procedure as well as wet chemical metal synthesis have been used for particle deposition. For pulse plating a potentiostat/galvanostat type MMates 510 AC from Materials Mates, Italy has been used. Electrode morphology has been determined in SEM type XL 30 ESEM from Philips, The Netherlands.
This report gives a brief overview to the state of the art of PEM fuel cell technology and a description of a newly developed fuel cell stack concept. One main research activity at the Westphalian Energy Institute of the Westphalian University of Applied Sciences is the development of PEM fuel cells, for which a range of different materials have been investigated for fuel cell pole plate construction. Whereas graphite is a material which has suitable properties concerning conductivity as well as manufacturing e.g. for milling, stainless steel foils are suitable for economical hydroforming processes. However, with steel coating is necessary to increase corrosion resistance as well as electrical conductivity. A new fuel cell stack design is currently under development using separated single fuel cells with hydraulic cell compression. The advantages of this stack concept are modularity, effective heat exchanging and constant, uniform cell compression which are further described in this work.
Bereits im April 2012 wurde im HZwei Magazin ein Stackkonzept für PEM-Brennstoffzellen vorgestellt, bei dem im Gegensatz zu der heute üblichen bipolaren Zellenanordnung mit mechanischer Verpressung Einzelzellen über ein Hydraulikmedium verpresst werden. Die Vorteile der homogenen Verpressung und Temperierung der Zellen wurden hierbei herausgestellt. Zwischenzeitlich ist basierend auf diesem Ansatz das Labormuster eines PEM-Elektrolyseurs entwickelt worden, bei dem der produzierte Wasserstoff oder auch der Sauerstoff mit hohen Ausgangsdrücken, z.B. auf einem für Power-2-Gas-Anlagen günstigem Druckniveau, direkt bereitgestellt werden kann.
Since the 1980’s, against the backdrop of global warming and the decline of conventional energy resources, low emission and renewable energy systems have gotten into the focus of politics as well as research and development. In order to decrease the emission of greenhouse gases Germany intents to generate 80% of its electrical energy from renewable and low emission sources by 2050. For low emission electricity generation hydrogen operated fuel cells are a potential solution. However, although fuel cell technology has been well known since the 19th century cost effective materials are needed to achieve a breakthrough in the market.
Proton Exchange Membrane Fuel Cells with Carbon Nanotubes as Electrode Material
At the Westphalian Energy Institute of the Wesphalian University of Applied Sciences one main focus is on the research of proton exchange membrane fuel cells (PEMFC). PEMFC membrane electrode assemblies (MEA) consist of a polymer membrane with electrolytic properties covered on both sides by a catalyst layer (CL) as well as a porous and electrical conductive gas diffusion layer (GDL).
For PEMFC carbon nanotubes (CNT) have ideal properties as electrode material concerning electrical conductivity, oxidation resistance and media transport. CNTs are suitable for the use as catalyst support material within the CL due to their large surface in comparison to conventional carbon supports. Furthermore, oxygen plasma treated CNTs show electrochemical activity referred to hydrogen adsorption and desorption, which has been shown by cyclic voltammetry in 0.5 M sulfuric acid solution. According to the PEMFCs anode a GDL coated with oxygen plasma activated CNTs has promising properties to significantly reduce catalyst content (e.g. platinum) of the anodic CL.
In this experimental work we present a novel electrolyzer system for the production of hydrogen and oxygen at high pressure levels without an additional mechanical compressor. Due to its control strategies, the operation conditions for this electrolyzer can be kept optimal for each load situation of the system. Furthermore, the novel system design allows for dynamic long-term operation as well as for easy maintainability. Therefore, the device meets the requirements for prospective power-to-gas applications, especially, in order to store excess energy from renewable sources. A laboratory scale device has been developed and high-pressure operation was validated. We also studied the long-term stability of the system by applying dynamic load cycles with load changes every 30 sec. After 80 h of operation the used membrane electrode assembly (MEA) was investigated by means of SEM, EDX and XRD analysis.
The technology of polymer electrolyte membrane (PEM) electrolysis provides an efficient way to produce hydrogen. In combination with renewable energy sources, it promises to be one of the key factors towards a carbon-free energy infrastructure in the future. Today, PEM electrolyzers with a power consumption higher than 1 MW and a gas output pressure of 30 bar (or even higher) are already commercially available. Nevertheless, fundamental research and development for an improved efficiency is far from being finally accomplished, and mostly takes place on a laboratory scale. Upscaling the laboratory prototypes to an industrial size usually cannot be achieved without facing further problems and/or losing efficiency. With our novel system design based on hydraulic cell compression, a lot of the commonly occurring problems like inhomogeneous temperature and current distribution can be avoided. In this study we present first results of an upscaling by a factor of 30 in active cell area.
This experimental work deals with the preparation and investigation of PEM fuel cell electrodes, which are obtained using Graphene Related Material (GRM) serving as catalyst support material for platinum nanoparticles. The applied GRM belong to the group of carbon nanofibers and exhibits a helical-ribbon structure with dimensions of 50 nm in diameter and an average length up to a few µm. Furthermore, utilized GRM provide a superior graphitisation degree of about 100 %, which leads to both high corrosion resistance and low ohmic resistance. Material stability plays one of the main roles for long term fuel cell operation, whereby a great electrical catalyst contact combined with high specific surface area yields in high fuel cell performances.
Prior to GRM dispersion and deposition onto a gas diffusion layer, the graphene structures are functionalized by oxygen plasma treatment. Through this step, functional oxygen groups are generated onto the GRM outer surface providing an improved hydrophilic behaviour and facilitating the GRM suspension preparation. In addition, the oxygen groups act as anchors for platinum nanoparticles which are subsequently deposited onto the GRM surface through a pulse electrodeposition process.
Membrane electrode assemblies produced with the prepared electrodes are investigated in-situ in a PEM fuel cell test bench.
In this study, a novel design concept for PEMFC (polymer electrolytemembrane fuel cell) stacks is presented with singlecells inserted in pockets surrounded by a hydraulic medium. Thehydraulic pressure introduces necessary compression forces to themembrane electrode assembly of each cell within a stack. Moreover, homogeneous cell cooling is achieved by this medium. First,prototypes presented in this work indicate that, upscaling of cells for the novelstack design is possible without significantperformancelosses. Due to its modularity and scalability, this stackdesign meets the requirements for large PEMFC units.