Refine
Year of publication
Document Type
- Article (24)
- Conference Proceeding (14)
Keywords
- carbon nanofibers, platinum electrodeposition, ele ctrochemical surface area (1)
- AEM-Electrolysis (1)
- Additive manufacturing Directed energy deposition-arc 316L stainless steel Corrosion behavior Electrochemical corrosion (1)
- Cavitation; Corrosion; Laser remelting; Self-fluxing alloys; Stellite 6 (1)
- Electrodeposition (1)
- Erneuerbare Energien (1)
- Hydraulic compression, Carbon Nano Fibers, PEM Fuel Cells, Catalyst utilization (1)
- Hydrogen evolution reaction (1)
- Kohlenstoff-Nanoröhre (1)
- Ni-Mo alloy Catalyst (1)
Institute
Based on the fact that titanium and titanium alloys have poor fretting fatigue resistance and poor tribological properties, it is necessary to apply some surface engineering methods in order to increase the exploitation characteristics of these materials. One may either implement some surface treatment technologies or even deposit overlay coatings by thermal spraying.
The present study is focused on the achieved properties of the ceramic coatings (Al2O3 + 13 wt.% TiO2) deposited onto a titanium substrate using high velocity oxygen fuel (HVOF) and plasma spraying (APS) respectively.
The effect of the deposition method on the microstructure, phase constituents, and mechanical properties of the ceramic coatings was investigated by means of scanning electron microscopy (SEM), X-ray diffraction technique (XRD) and nanoindentation tests. The sliding wear performances of the Al2O3–TiO2 coatings were tested using a pin on disk wear tester.
Optimization of the laser remelting process for HVOF-sprayed Stellite 6 wear resistant coatings
(2016)
Cobalt base alloys are used in all industrial areas due to their excellent wear resistance. Several studies have shown that Stellite 6 coatings are suitable not only for protection against sliding wear, but also in case of exposure to impact loading. In this respect, a possible application is the protection of hydropower plant components affected by cavitation. The main problem in connection with Stellite 6 is the deposition procedure of the protective layers, both welding and thermal spraying techniques requesting special measures in order to prevent the brittleness of the coating. In this study, Stellite 6 layers were HVOF thermally sprayed on a martensitic 13-4 stainless steel substrate, as usually used for hydraulic machinery components. In order to improve the microstructure of the HVOF-sprayed coatings and their adhesion to the substrate, laser remelting was applied, using a TRUMPF Laser type HL 124P LCU and different working parameters. The microstructure of the coatings, obtained for various remelting conditions, was evaluated by light microscopy, showing the optimal value of the pulse power, which provided a homogenous Stellite 6 layer with good adhesion to the substrate.
This paper aims to compare cobalt-based (type Stellite 6) and nickel-based self-fluxing alloys (type NiCrBSiMo) regarding both their cavitation erosion resistance and corrosion resistance. The two types of protective layers were thermally sprayed onto a substrate of martensitic stainless steel. In order to improve the layers' characteristics and their metallurgical bonding to the substrate, the Stellite 6 coating was laser remelted, while the NiCrBSiMo coating was treated by flame fusion. The cavitation erosion resistance of the two materials was evaluated by measurements of the mean depth of erosion developed during a testing period of 165 minutes, using a 20 kHz ultrasonic vibrator at a peak-to-peak amplitude of 50 μm. In addition, the corrosion resistance of the layers was assessed by potentiodynamic corrosion tests carried out in H2SO4 + NaCl solution at room temperature, using calomel as reference electrode. In order to highlight the differences regarding the behaviour of the two protective materials, the authors also carried out microstructural investigations of the layers before and after exposure to cavitation and corrosion. The investigations showed that both types of layers can provide improved protection of the martensitic stainless steel substrate against cavitation, whilst the NiCrBSiMo coating additionally confers significantly increased resistance to corrosion.
The membrane electrode assemblies (MEA) for polymer electrolyte membrane fuel cells (PEMFC) developed at the Westphalian Energy Institute are based on oxygen plasma activated carbon nanotubes (CNT) doped with platinum particles. For electrode preparation an ink is used containing the activated CNTs as well as hydrophobic and hydrophilic material in solved form. After this ink is sprayed onto a graphitic substrate platinum particles are deposited by pulse plating method, where the plasma activation enhances CNT dispersibility as well as platinum deposition. This materials mixture is structured in nanoscale with the aim to increase the catalyst particles’ specific surface. For low reactance at operation, homogeneous compression of the MEA’s layers is necessary within a PEMFC. A novel stack architecture for electrochemical cells, especially PEMFC as well as PEM electrolysers, has been developed in order to achieve ideal cell operation conditions. Single cells of such a stack are inserted into flexible slots that are surrounded by a hydraulic medium which is pressurised during operation in order to achieve an even compression and cooling of the stack’s cells. With this stack design it has been possible to construct a test facility for simultaneous characterisation of several MEA samples. As compression and temperature conditions of every single sample are the same, the effects of e.g. different electrode configurations can be investigated with the novel test system.
To further increase platinum utilisation in PEM fuel cells CNFs are investigated as catalyst support material due to the CNF’s high specific surface area. Furthermore, CNFs provide suitable properties concerning corrosion resistance as well as electrical conductivity in contrast to conventional carbon supports.
This work presents the results of an electrode preparation procedure based on O2 plasma activated CNFs. The plasma treatment leads to CNF dispersibility in alcohol/water for a spray coating process. Furthermore, O2 plasma activation enhances metal deposition on the CNF’s surface. Pulse plating procedure as well as wet chemical metal synthesis have been used for particle deposition. For pulse plating a potentiostat/galvanostat type MMates 510 AC from Materials Mates, Italy has been used. Electrode morphology has been determined in SEM type XL 30 ESEM from Philips, The Netherlands.
Since the 1980’s, against the backdrop of global warming and the decline of conventional energy resources, low emission and renewable energy systems have gotten into the focus of politics as well as research and development. In order to decrease the emission of greenhouse gases Germany intents to generate 80% of its electrical energy from renewable and low emission sources by 2050. For low emission electricity generation hydrogen operated fuel cells are a potential solution. However, although fuel cell technology has been well known since the 19th century cost effective materials are needed to achieve a breakthrough in the market.
Proton Exchange Membrane Fuel Cells with Carbon Nanotubes as Electrode Material
At the Westphalian Energy Institute of the Wesphalian University of Applied Sciences one main focus is on the research of proton exchange membrane fuel cells (PEMFC). PEMFC membrane electrode assemblies (MEA) consist of a polymer membrane with electrolytic properties covered on both sides by a catalyst layer (CL) as well as a porous and electrical conductive gas diffusion layer (GDL).
For PEMFC carbon nanotubes (CNT) have ideal properties as electrode material concerning electrical conductivity, oxidation resistance and media transport. CNTs are suitable for the use as catalyst support material within the CL due to their large surface in comparison to conventional carbon supports. Furthermore, oxygen plasma treated CNTs show electrochemical activity referred to hydrogen adsorption and desorption, which has been shown by cyclic voltammetry in 0.5 M sulfuric acid solution. According to the PEMFCs anode a GDL coated with oxygen plasma activated CNTs has promising properties to significantly reduce catalyst content (e.g. platinum) of the anodic CL.
In state of the art polymer electrolyte membrane fuel cells (PEMFC) rare and expensive platinum group metals (PGM) are used as catalyst material. Reduction of PGM in PEMFC electrodes is strongly required to reach cost targets for this technology. An optimal catalyst utilisation is achieved in the case of nano-structured particles supported on carbon material with a large specific surface area. In this study, graphitic material in form of carbon nanofibres (CNFs) is decorated with platinum (Pt) particles serving as catalyst material for PEMFC electrodes with low Pt loading. For electrode preparation CNFs have been previously activated by means of radio frequency induced oxygen plasma. This kind of treatment results in formation of functional groups on the CNF’s surface which directly influences the characteristics of subsequent Pt particle deposition. Different plasma parameters (plasma power, gas flow or exposure time) have to be set in order to achieve formation of oxygen containing functional groups (hydroxylic, carboxylic or carbonylic) on the CNF’s surface. In the frame of this experimental work, electrodes are investigated in respect of optimal morphology, microstructure as well as electrochemical properties. Therefore, samples were characterised by means of scanning electron microscopy combined with energy dispersive X-ray analysis, transmission electron microscopy, thermogravimetry, X-ray diffraction, X-ray fluorescence as well as polarisation measurements.
Platinum is one of the most effective electro catalysts for PEMFCs (proton exchange membrane fuel cells), but because of its prohibitive price, the use of this metal in industrial purposes is limited. As a consequence, during last years, several materials have been investigated, in order to obtain an efficient catalyst for both ORR (oxygen reduction reaction) and HOR (hydrogen oxidation reaction), which can replace the expensive platinum but preserving the same properties: high electrical conductivity, structural stability and good corrosion resistance. Moreover, one of the most important parameters for catalyst materials is the electrochemical surface area (real surface area), which has a strong influence on the reaction rate and also on the current density.
CNFs (carbon nanofibers) are considered to be a promising catalyst support material due to their unique characteristics, excellent mechanical, electrical and structural properties, high surface area and nevertheless, good interaction with platinum particles.
The possibility of preparing CNFs decorated with platinum by electrochemical methods was tested, using a hexachloroplatinic solution bath. The experiments were carried out with the aid of a Potentiostat/Galvanostat MMate 510, in a three – electrode cell.
The aim of the present work was to determine the electrochemical surface area of the CNFs – Pt catalysts, using an electrochemical method. The obtained results correlate very well with the particles size and distribution of platinum, analyzed by SEM (scanning electron microscopy) respectively with the quantity of deposited platinum determined by TG (thermo gravimetrical analyses). Cyclic voltammetry is a suitable method for estimation of the real surface area for catalyst particles.
In polymer electrolyte membrane fuel cells (PEMFC) noble metal nano particles are deposited on graphitic supports serving as electrocatalysts for devices with high power density. In this study anodes are analysed with low platinum loading of about 0.1 mg cm-2. These electrodes are prepared by carbon nano fibres (CNF) decorated with platinum nano particles. For electrode manufacturing two sorts of fibres, which are produced in an industrial scale, are used with different graphitisation degree and surface area. CNF layers are applied on commercially available graphitic substrate by spray coating which leads to a porous structure with high surface area. Subsequently, platinum deposition is achieved by pulsed electroplating for an improved platinum utilisation in PEMFC electrodes. Spray coating and platinum deposition are assisted by a previous oxygen plasma activation process. Prepared anode material is characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectroscopy (XRD), X-ray fluorescence spectroscopy (XRF) and thermogravimetry (TGA). Electrochemical analyses (cyclic voltammetry and corrosion test) are carried out in 0.5 M sulphuric acid. The effect of graphitisation degree of carbon nano fibres on the performance of prepared electrodes is investigated in-situ in a PEM fuel cell test bench.
Carbon Nanofibers (CNF) are considered to be a promising catalyst support material due to their unique characteristics, excellent mechanical, electrical and structural properties, high surface area and nevertheless, good interaction with metallic catalyst particles. The possibility of preparing CNF decorated with platinum by an electrochemical method was tested, using a hexachloroplatinic bath solution. The experiments were carried out with the aid of a Potentiostat/Galvanostat Ivium Technologies Vertex, in a three – electrode cell. The aim of the present work was to determine the electrochemical surface area (ECSA) of the CNF-Pt catalysts in relation to the functionalization treatment of fibers, using an electrochemical method. ECSA for different functionalized CNF-Pt catalysts was determined by cyclic voltammetry in 0.5 M H2SO4 solution. The highest active surface of platinum was obtained for the samples with CNF functionalized by plasma treatment using 80 W for 1800 s. The obtained results correlate very well with the particles size and distribution of platinum, revealed by scanning electron microscopy (SEM) and the quantity of deposited platinum determined by thermo gravimetrical analysis (TGA) respectively. Cyclic voltammetry (CV) has been proven to be a suitable method for estimation of the ECSA of the electrocatalysts.