Refine
Document Type
- Article (5)
- Conference Proceeding (2)
Keywords
- water electrolysis (2)
- Hydraulic cell compression (1)
- PEM Electrolysis, Hydrogen, Hydraulic Compression, High Pressure (1)
- PEM electrolysis (1)
- PEMWE (1)
- Upscaling laboratory models (1)
- bipolar plate (1)
- coatings (1)
- corrosion resistance (1)
- hydraulic cell compression (1)
- novel (1)
- polymer electrolyte membrane (1)
In this experimental work we present a novel electrolyzer system for the production of hydrogen and oxygen at high pressure levels without an additional mechanical compressor. Due to its control strategies, the operation conditions for this electrolyzer can be kept optimal for each load situation of the system. Furthermore, the novel system design allows for dynamic long-term operation as well as for easy maintainability. Therefore, the device meets the requirements for prospective power-to-gas applications, especially, in order to store excess energy from renewable sources. A laboratory scale device has been developed and high-pressure operation was validated. We also studied the long-term stability of the system by applying dynamic load cycles with load changes every 30 sec. After 80 h of operation the used membrane electrode assembly (MEA) was investigated by means of SEM, EDX and XRD analysis.
The technology of polymer electrolyte membrane (PEM) electrolysis provides an efficient way to produce hydrogen. In combination with renewable energy sources, it promises to be one of the key factors towards a carbon-free energy infrastructure in the future. Today, PEM electrolyzers with a power consumption higher than 1 MW and a gas output pressure of 30 bar (or even higher) are already commercially available. Nevertheless, fundamental research and development for an improved efficiency is far from being finally accomplished, and mostly takes place on a laboratory scale. Upscaling the laboratory prototypes to an industrial size usually cannot be achieved without facing further problems and/or losing efficiency. With our novel system design based on hydraulic cell compression, a lot of the commonly occurring problems like inhomogeneous temperature and current distribution can be avoided. In this study we present first results of an upscaling by a factor of 30 in active cell area.
Performance enhancing study for large scale PEM electrolyzer cells based on hydraulic compression
(2017)
For proton exchange membrane water electrolysis (PEMWE) to become competitive, the cost of stack components, such as bipolar plates (BPP), needs to be reduced. This can be achieved by using coated low-cost materials, such as copper as alternative to titanium. Herein we report on highly corrosion-resistant copper BPP coated with niobium. All investigated samples showed excellent corrosion resistance properties, with corrosion currents lower than 0.1 µA cm−2 in a simulated PEM electrolyzer environment at two different pH values. The physico-chemical properties of the Nb coatings are thoroughly characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). A 30 µm thick Nb coating fully protects the Cu against corrosion due to the formation of a passive oxide layer on its surface, predominantly composed of Nb2O5. The thickness of the passive oxide layer determined by both EIS and XPS is in the range of 10 nm. The results reported here demonstrate the effectiveness of Nb for protecting Cu against corrosion, opening the possibility to use it for the manufacturing of BPP for PEMWE. The latter was confirmed by its successful implementation in a single cell PEMWE based on hydraulic compression technology.
In this work, a novel polymer electrolyte membrane water electrolyzer (PEMWE) test cell based on hydraulic single-cell compression is described. In this test cell, the current density distribution is almost homogeneous over the active cell area due to hydraulic cell clamping. As the hydraulic medium entirely surrounds the active cell components, it is also used to control cell temperature resulting in even temperature distribution. The PEMWE single-cell test system based on hydraulic compression offers a 25 cm2 active surface area (5.0 × 5.0 cm) and can be operated up to 80°C and 6.0 A/cm2. Construction details and material selection for the designed test cell are given in this document. Furthermore, findings related to pressure distribution analyzed by utilizing a pressure-sensitive foil, the cell performance indicated by polarization curves, and the reproducibility of results are described. Experimental data indicate the applicability of the presented testing device for relevant PEMWE component testing and material analysis.