The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1x1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 meV are determined. The case of the H2/NaCl(001) monolayer for 26 meV scattering energy is computationally challenging and difficult because it has a much more corrugated surface than those in the previous applications for triangular lattices. This requires a large number of coupled channels for convergence in the wave-packet-scattering calculation and a long series of Fourier amplitudes to represent the helium-target potential energy surface. A modified series is constructed in which a truncated Fourier expansion of the potential is constrained to give the exact value of the potential at some key points and which mimics the potential with fewer Fourier amplitudes. The shear horizontal phonon mode is again accessed by the helium scattering for small misalignment of the scattering plane relative to symmetry axes of the monolayer. For 1° misalignment, the calculated intensity of the longitudinal acoustic phonon mode frequently is higher than that of the shear horizontal phonon mode in contrast to what was found at scattering energies near 10 meV for triangular lattices of Ar, Kr, and Xe on Pt(111).
The adsorption and reaction of the amino acid glycine (NH2-CH2-COOH) are studied experimentally on the polar single crystal surface of zinc oxide, ZnO(000-1), by X-ray photoelectron spectroscopy (XPS) under UV light in presence and absence of molecular O2. Deposition at 350 K mainly resulted in a largely deprotonatedmonolayer (NH2-CH2-COO−(a)+OH(s); where O is surface oxygen,(a)is for adsorbed and(s)is for surface species) identified by its XPS C1s binding energy at 289.3 eV (-COO), 286.7 eV (-CH2-) and XPS O1s at 531.8 eV(-COO). A decrease in the signals of all functional groups of the adsorbed glycine (monitored by their C1s, O1s,and N1s lines) is seen upon UV excitation in the absence and presence of O2pressures up to 5 × 10−6 mbar. The photoreaction cross sections extracted from the decrease in the C1s peaks were found to be =2.6 × 10−18(COO(a)) and 1.4 × 10−18(-CH2-)cm^2. The photoactivity of the ZnO(000-1) surface under UHV-conditions is found to be comparable to that seen in direct photolysis of amino acids in solution.
The diffusion of hydrogen adsorbed inside layered MoS2 crystals has been studied by means of quasi- elastic neutron scattering, neutron spin-echo spectroscopy, nuclear reaction analysis, and X-ray photoelectron spectroscopy. The neutron time-of-flight and neutron spin-echo measurements demonstrate fast diffusion of hydrogen molecules parallel to the basal planes of the two dimensional crystal planes. At room temperature and above, this intra-layer diffusion is of a similar speed to the surface diffusion that has been observed in earlier studies for hydrogen atoms on Pt surfaces. A significantly slower hydrogen diffusion was observed perpendicular to the basal planes using nuclear reaction analysis.
The adsorption of water on r-TiO2(110) has been investigated with thermal desorption spectroscopy (TDS) and helium atom scattering. Conventional TDS using a mass spectrometer and He-TDS monitoring reflected He beam intensity consistently show the existence of a structurally well-defined monolayer as well as a highly ordered second layer of water and a disordered multilayer phase. He diffraction patterns recorded along the high symmetry [001], equation image, and equation image directions reveal a well-ordered superstructure with (1x1) symmetry, providing strong evidence for the absence of a partially dissociated monolayer on the perfect parts of the substrate. No changes in the diffraction patterns are observed after irradiation with UV-light.
Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO2(110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a sig- nificant substrate-mediated interaction between adsorbates. The result is a complex super- structure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not depro- tonate on the defect-free terraces of the rutile TiO2(110) surface.
Hydrogen concentrations in ZnO single crystals exposing different surfaces have been determined to be in the range of (0.02–0.04) at.% with an error of ±0.01 at.% using nuclear reaction analysis. In the subsurface region, the hydrogen concentration has been determined to be higher by up to a factor of 10. In contrast to the hydrogen in the bulk, part of the subsurface hydrogen is less strongly bound, can be removed by heating to 550°C, and reaccommodated by loading with atomic hydrogen. By exposing the ZnO(10-10) surface to water above room temperature and to atomic hydrogen, respectively, hydroxylation with the same coverage of hydrogen is observed.