Fachbereiche
Refine
Document Type
- Article (7)
- Part of a Book (5)
- Book (2)
- Conference Proceeding (2)
- Master's Thesis (1)
Keywords
- Field measurement (2)
- Solar modules (2)
- Amylase, Enzymcharakterisierung (1)
- Big Data (1)
- Internet of Things (1)
- Mikroklima (1)
- Performance prediction (1)
- Smart Cities (1)
- Stadt Gelsenkirchen (1)
- Temperature coefficients (1)
Institute
- Fachbereiche (17)
- Wirtschaftsrecht (4)
n-type silicon modules
(2023)
The photovoltaic industry is facing an exponential growth in the recent years fostered by a dramatic decrease in installation prices. This cost reduction is achieved by means of several mechanisms. First, because of the optimization of the design and installation process of current PV projects, and second, by the optimization, in terms of performance, in the manufacturing techniques and material combinations within the modules, which also has an impact on both, the installation process, and the levelized cost of electricity (LCOE).
One popular trend is to increase the power delivered by photovoltaic modules, either by using larger wafer sizes or by combining more cells within the module unit. This solution means a significant increase in the size of these devices, but it implies an optimization in the design of photovoltaic plants. This results in an installation cost reduction which turns into a decrease in the LCOE.
However, this solution does not represent a breakthrough in addressing the real challenge of the technology which affects the module requirements. The innovation efforts must be focused on improving the modules capability to produce energy without enlarging the harvesting area. This challenge can be faced by approaching some of the module characteristics which are summarized in this chapter.
In this work a mathematical approach to calculate solar panel temperature based on measured irradiance, temperature and wind speed is applied. With the calculated module temperature, the electrical solar module characteristics is determined. A program developed in MatLab App Designer allows to import measurement data from a weather station and calculates the module temperature based on the mathematical NOCT and stationary approach with a time step between the measurements of 5 minutes. Three commercially available solar panels with different cell and interconnection technologies are used for the verification of the established models. The results show a strong correlation between the measured and by the stationary model predicted module temperature with a coefficient of determination R2 close to 1 and a root mean square deviation (RMSE) of ≤ 2.5 K for a time period of three months. Based on the predicted temperature, measured irradiance in module plane and specific module information the program models the electrical data as time series in 5-minute steps. Predicted to measured power for a time period of three months shows a linear correlation with an R2 of 0.99 and a mean absolute error (MAE) of 3.5, 2.7 and 4.8 for module ID 1, 2 and 3. The calculated energy (exemplarily for module ID 2) based on the measured, calculated by the NOCT and stationary model for this time period is 118.4 kWh, resp. 116.7 kWh and 117.8 kWh. This is equivalent to an uncertainty of 1.4% for the NOCT and 0.5% for the stationary model.
Advanced Determination of Temperature Coefficients of Photovoltaic Modules by Field Measurements
(2023)
In this work data from outdoor measurements, acquired over the course of up to three years on commercially available solar panels, is used to determine the temperature coefficients and compare these to the information as stated by the producer in the data sheets. A program developed in MatLab App Designer allows to import the electrical and ambient measurement data. Filter algorithms for solar irradiance narrow the irradiance level down to ~1000 W/m2 before linear regression methods are applied to obtain the temperature coefficients. A repeatability investigation proves the accuracy of the determined temperature coefficients which are in good agreement to the supplier specification if the specified values for power are not larger than -0.3%/K. Further optimization is achieved by applying wind filter techniques and days with clear sky condition. With the big (measurement) data on hand it was possible to determine the change of the temperature coefficients for varying irradiance. As stated in literature we see an increase of the temperature coefficient of voltage and a decline for the temperature coefficient of power with increasing irradiance.
As a rule, an experiment carried out at school or in undergraduate study
courses is rather simple and not very informative. However, when the experiments
are to be performed using modern methods, they are often abstract and
difficult to understand. Here, we describe a quick and simple experiment,
namely the enzymatic characterization of ptyalin (human salivary amylase)
using a starch degradation assay. With the experimental setup presented here,
enzyme parameters, such as pH optimum, temperature optimum, chloride
dependence, and sensitivity to certain chemicals can be easily determined. This
experiment can serve as a good model for enzyme characterization in general,
as modern methods usually follow the same principle: determination of the
activity of the enzyme under different conditions. As different alleles occur in
humans, a random selection of test subjects will be quite different with regard
to ptyalin activities. Therefore, when the students measure their own ptyalin
activity, significant differences will emerge, and this will give them an idea of
the genetic diversity in human populations. The evaluation has shown that the
pupils have gained a solid understanding of the topic through this experiment.
This chapter is a commentary on Principle 21 of the United Nations Guiding Principles on Business and Human Rights (UNGPs). The UNGPs, endorsed by the United Nations Human Rights Council in 2011, are the first universally accepted framework for addressing business responsibilities for human rights. They outline State obligations to protect human rights, businesses’ responsibility to respect human rights, and the importance of both States and businesses offering adequate remedies for human rights breaches.
Article 135 TFEU
(2023)
Article 134 TFEU
(2023)
This chapter is a commentary on Principle 20 of the United Nations Guiding Principles on Business and Human Rights (UNGPs). The UNGPs, endorsed by the United Nations Human Rights Council in 2011, are the first universally accepted framework for addressing business responsibilities for human rights. They outline State obligations to protect human rights, businesses’ responsibility to respect human rights, and the importance of both States and businesses offering adequate remedies for human rights breaches.
The German supply chain law ( Lieferkettensorgfaltspflichtengesetz, abbreviated: LkSG) which enters into force on 1 January 2023 is part of the developing legal framework for human rights in global supply chains. Like the French vigilance law, it represents a new generation of supply chain laws which impose mandatory human rights due diligence obligations. The LkSG requires enterprises to exercise a number of due diligence obligations – from conducting risk analysis to undertaking preventive measures or remedial actions. The law is based on public enforcement via a competent authority, the Federal Office for Economic Affairs and Export Control (BAFA). The BAFA monitors and enforces compliance with the due diligence obligations. Non-compliant enterprises can be fined with up to 800,000 Euros and, in some cases, up to 2% of the annual turnover. Whilst the LkSG is an important step towards achieving greater corporate sustainability, it also has limitations. It was a political compromise and, as such, it does not include a new civil liability for non-compliance. Moreover, by default, it only applies to the enterprise’s own business area and its direct suppliers, whereas indirect suppliers are only included where the enterprise has substantiated knowledge that an obligation has been violated.