Maschinenbau und Facilities Management
Refine
Document Type
- Article (6)
- Book (2)
- Part of a Book (1)
- Contribution to a Periodical (1)
- Working Paper (1)
Language
- German (6)
- English (3)
- Multiple languages (2)
Keywords
- BIM (1)
- Cavitation; Corrosion; Laser remelting; Self-fluxing alloys; Stellite 6 (1)
- Gesellschaft Technische Gebäudeausrüstung (1)
- IFC (1)
- Mathematische Ausdrücke (1)
- Stellite 6; HVOF-spraying; Laser remelting; Cavitation erosion; Coatings (1)
- TGA (1)
- Titanium; Al2O3–TiO2 coatings; Nanoindentation (1)
- mathematical expressions (1)
Welding and joining of components processed by additive manufacturing (AM) to other AMas well as conventionally produced components is of high importance for industry as thisallows to combine advantages of either technique and to produce large-scale structures,respectively. One of the key influencing factors with respect to weldability and mechanicalproperties of AM components was found to be the inherent microstructural anisotropy ofthese components. In present work, the precipitation-hardenable AleSi10Mg was fabri-cated in different build orientations using selective laser melting (SLM) and subsequentlyjoined by friction stir welding (FSW) in different combinations. Microstructural analysisshowed considerable grain refinement in the friction stir zone, however, pronouncedsoftening occurred in this area. The latter can be mainly attributed to changes in themorphology and size of Si particles. Upon combination of different build orientations aremarkable influence on the tensile strength of FSW joints was seen. Cyclic deformationresponses of SLM and FSW samples were examined in depth. Fatigue properties of thisalloy in the low-cycle fatigue (LCF) regime imply that SLM samples with the building di-rection parallel to the loading direction show superior performance under cyclic loading ascompared to the other conditions and the FSW joints. From results presented solid process-microstructure-property relationships are drawn.
TGA-Modelle in BIM-Projekten
(2020)
Die BIM-Methode erfasst in Deutschland mittlerweile alle Gewerke im Bauhauptgewerbe. Für die TGA-Branche hat sich gezeigt, dass die Priorität der Produkthersteller auf der Bereitstellung der Geometriedaten liegt. Weiterführende Metadaten und Attribute (z. B. Material, Masse, Preise, Leistungsdaten) sind oftmals nur in reduzierter Form oder gar nicht vorhanden. An exemplarischen Beispielen von RLT-Reräten und Komponenten werden die geometrischen und semantischen Möglichkeiten beim IFC-Format untersucht.
This collection of mathematical expressions and how they are read aloud in German and English is intended to help engineers and engineering students.
This paper aims to compare cobalt-based (type Stellite 6) and nickel-based self-fluxing alloys (type NiCrBSiMo) regarding both their cavitation erosion resistance and corrosion resistance. The two types of protective layers were thermally sprayed onto a substrate of martensitic stainless steel. In order to improve the layers' characteristics and their metallurgical bonding to the substrate, the Stellite 6 coating was laser remelted, while the NiCrBSiMo coating was treated by flame fusion. The cavitation erosion resistance of the two materials was evaluated by measurements of the mean depth of erosion developed during a testing period of 165 minutes, using a 20 kHz ultrasonic vibrator at a peak-to-peak amplitude of 50 μm. In addition, the corrosion resistance of the layers was assessed by potentiodynamic corrosion tests carried out in H2SO4 + NaCl solution at room temperature, using calomel as reference electrode. In order to highlight the differences regarding the behaviour of the two protective materials, the authors also carried out microstructural investigations of the layers before and after exposure to cavitation and corrosion. The investigations showed that both types of layers can provide improved protection of the martensitic stainless steel substrate against cavitation, whilst the NiCrBSiMo coating additionally confers significantly increased resistance to corrosion.
Optimization of the laser remelting process for HVOF-sprayed Stellite 6 wear resistant coatings
(2016)
Cobalt base alloys are used in all industrial areas due to their excellent wear resistance. Several studies have shown that Stellite 6 coatings are suitable not only for protection against sliding wear, but also in case of exposure to impact loading. In this respect, a possible application is the protection of hydropower plant components affected by cavitation. The main problem in connection with Stellite 6 is the deposition procedure of the protective layers, both welding and thermal spraying techniques requesting special measures in order to prevent the brittleness of the coating. In this study, Stellite 6 layers were HVOF thermally sprayed on a martensitic 13-4 stainless steel substrate, as usually used for hydraulic machinery components. In order to improve the microstructure of the HVOF-sprayed coatings and their adhesion to the substrate, laser remelting was applied, using a TRUMPF Laser type HL 124P LCU and different working parameters. The microstructure of the coatings, obtained for various remelting conditions, was evaluated by light microscopy, showing the optimal value of the pulse power, which provided a homogenous Stellite 6 layer with good adhesion to the substrate.
Based on the fact that titanium and titanium alloys have poor fretting fatigue resistance and poor tribological properties, it is necessary to apply some surface engineering methods in order to increase the exploitation characteristics of these materials. One may either implement some surface treatment technologies or even deposit overlay coatings by thermal spraying.
The present study is focused on the achieved properties of the ceramic coatings (Al2O3 + 13 wt.% TiO2) deposited onto a titanium substrate using high velocity oxygen fuel (HVOF) and plasma spraying (APS) respectively.
The effect of the deposition method on the microstructure, phase constituents, and mechanical properties of the ceramic coatings was investigated by means of scanning electron microscopy (SEM), X-ray diffraction technique (XRD) and nanoindentation tests. The sliding wear performances of the Al2O3–TiO2 coatings were tested using a pin on disk wear tester.