Maschinenbau und Facilities Management
Refine
Year of publication
Document Type
- Article (23)
- Book (2)
- Contribution to a Periodical (2)
- Part of a Book (1)
- Conference Proceeding (1)
- Working Paper (1)
Language
- English (21)
- German (7)
- Multiple languages (2)
Keywords
- Additive manufacturing (1)
- Additive manufacturing Directed energy deposition-arc 316L stainless steel Corrosion behavior Electrochemical corrosion (1)
- AlSi10Mg (1)
- Aluminum–silicon alloy (1)
- Arbeitskräftemangel (1)
- BIM (1)
- CNC milling (1)
- Casting (1)
- Cavitation; Corrosion; Laser remelting; Self-fluxing alloys; Stellite 6 (1)
- Cr3C2-NiCr (1)
Abstract
Considering the significant health risks posed by hard chrome plating during its application, thermally sprayed Cr3C2-NiCr cermet coatings represent a suitable alternative. Incorporating hexagonal boron nitride (hBN) as a dry lubricant into the feedstock powder can further enhance wear resistance and thermal conductivity, crucial for preventing premature failure caused by inadequate lubrication. In this study, the mass fraction of hBN was varied between 0 and 15 wt.% to assess its influence on the tribological performance of the coatings using pin-on-disk tests. The coating’s hardness was measured via the Vickers method, and its cracking tendency at the coating/substrate interface was evaluated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to analyze the microstructure and phase composition, while thermal diffusivity was determined using the laser flash method. The findings revealed that the inclusion of hBN, at concentrations of up to 10 wt.%, leads to an improvement in thermal diffusivity and a reduction in the coefficient of friction. However, exceeding this threshold leads to a decrease in hardness and increased crack formation tendency, highlighting the trade-off between frictional and mechanical properties.
Integrity Assessment of Electron-Beam-Welded Joints of Additively Manufactured AlSi10Mg Components
(2023)
Abstract
Laser-based powder bed fusion of metals (PBF-LB/M) is found to be a promising
processing method for the fabrication of components with no limits of complexity
by adding layers upon layers of material. However, drawbacks such as pro-
ductivity and dimension limitations adversely affect the employment of com-
ponents processed by additive manufacturing (AM) in envisaged applications.
This brings welding and joining techniques into play to integrate AM metal parts
into larger assemblies. In the present study, electron beam welding is used to join
the AlSi10Mg specimens, fabricated via two different manufacturing processes,
that is, PBF-LB/M and casting. The main focus is to study the quasistatic and
fatigue behavior of similar and dissimilar welded joints in different combinations,
namely AM–AM, AM–cast, and cast–cast, alongside thorough microstructure
analysis, to investigate the correlation between the microscopic and macroscopic
properties. Dissimilar welded joints demonstrate inferior material strength. This
fact can be attributed to the inherent coarse microstructure of the cast material.
Although similar welded joints of AM components suffer from high porosity in
the weld zone, they are characterized by a better fatigue life, which can be
attributed to the equiaxed eutectic microstructure in the welded area.
Abstract
In this work, we develop an approach for the level set based topology optimization of millable 3D structures. We focus on the 3-axis machining with realistic formed milling tools. The basis of the method lies in the identification of surface areas that cannot be reached by a given milling tool during optimization. For this purpose, we present an interpolation method that identifies these areas by an interpolation of the level set function along the outer contours of realistic milling tools, considering available machining directions. To minimize inaccessible surfaces, we define a potential field whose values decrease linearly into the outer normal direction of the structure. The inaccessible boundaries are pushed outward by minimizing their respective potential and therefore become accessible. Manufacturability is integrated into the optimization problem as an explicit constraint.
Abstract
Additive manufacturing (AM) has gained considerable interest due to its ability to produce lightweight parts with hierarchical microstructures. However, the current constraints on the build chamber size in powder-bed fusion type AM processes limit its industrial application. A hybrid welded joint, consisting of an AM-processed and a conventionally manufactured part, can be employed to produce larger components. Due to the varying processing conditions, these hybrid welded joints contain a wide range of microstructural heterogeneities, which influences the mechanical properties of the joint. Using a numerical model to predict the mechanical behavior of welded joints by considering the microstructural variations is essential for the safe and reliable implementation of hybrid welded joints. This study aims to predict the local tensile behavior of each region of a hybrid friction-stir welded joint of AlSi10Mg produced by laser-based powder bed fusion and casting using a microstructure-sensitive model as well as the global tensile behavior by considering the properties of each region using a joint macroscopic model. The results from this modeling approach agree well with the experimental results. Therefore, this method can predict the mechanical behavior of hybrid welded joints and can establish the structure–property relationship in each weld region.
In recent decades, batch hot-dip galvanized (HDG) steel has proven itself in practical applications due to the good corrosion resistance of its components. Despite the importance of the mechanical-load-bearing capacity of these coatings, the wear behavior has, so far, only been investigated very sporadically and not systematically, so a quantification of the wear behavior and statements on the mechanisms are vague. Therefore, two body wear tests with bonded abrasive grain were carried out. Varying the friction rolls, load, and total number of cycles, the wear behavior was investigated. The mass loss and the layer thickness reduction were measured at different intervals. After the test, the microstructure in the cross- section and the hardness according to Vickers (0.01 HV) were evaluated. The results showed that the wear behavior of HDG coatings against abrasive loads can be characterized with the selected test conditions. Initially, the applied load removed the soft η-phase. As the total number of cycles increases, the η- and ζ-phases deform plastically, resulting in a lower mass reduction compared to that expected from the measured layer thickness. The characteristic structure of a batch HDG coating with hard intermetallic Zn-Fe phases and an outer pure zinc phase has demonstrated effective resistance to abrasion.
Brazing is a joining process that involves melting a filler metal and flowing it into the joint between two closely fitting parts. While brazing is primarily used for joining metals, it can also be adapted for certain coating deposition applications. The present study investigates the microstructure and corrosion behavior and sliding wear resistance of WC (Tungsten Carbide)-CoCr-Ni reinforced Co-based composite coatings deposited onto the surface of AISI 904L stainless steel using a vacuum brazing method. The primary objective of this experimental work was to evaluate the influence of WC-based particles added to the microstructure and the properties of the brazed Co composite coating. The focus was on enhancing the sliding wear resistance of the coatings while ensuring that their corrosion resistance in chloride media was not adversely affected. The morphology and microstructure of the composite coatings were investigated using scanning electron microscopy (SEM) and phase identification by X-ray diffraction (XRD). The SEM analysis revealed in the coating the presence of intermetallic compounds and carbides, which increase the hardness of the material. The sliding wear resistance was assessed using the pin-on-disk method, and the corrosion properties were determined using electrochemical measurements. The results obtained showed that as the WC particle ratio in the Co-based composite coating increased, the mechanical properties improved, the alloy became harder, and the tribological properties were improved. The evaluation of the electrochemical tests revealed no significant alterations of the manufactured composite in comparison with the Co-based alloys. In all cases, the corrosion behavior was better compared with that of the stainless-steel substrate.
Coating efficiency and quality can be significantly improved by carefully optimizing the coating parameters. Particularly in the flame spray method, the oxygen/fuel ratio, which is classified
as oxidizing flame stoichiometry (excess oxygen) and reduces flame stoichiometry (excess acetylene), and spray distance are the most critical factors, as they correlate significantly with coating porosity and corrosion performance. Hence, understanding the effects of these parameters is essential to further minimize the porosity, improving the corrosion performance of thermally sprayed coatings. In this work, a NiWCrBSi alloy coating was deposited via the oxyacetylene flame spray/Flexicord-wire (FS/FC) method. The effect of the flame oxygen/fuel ratio and spray distance on the microstructure properties and corrosion behavior of the coatings was investigated. Afterwards, the microstructure, phases’ compositions, spray distance, and corrosion performance were studied. The equivalent circuit
model was proposed, and the corrosion mechanism was discussed. The obtained results highlight that the oxygen-to-fuel ratio is a promising solution for the further application of flame spray/Flexicordwire (FS/FC) cermet coatings in hostile environments. Depending on the flame’s oxygen/fuel ratio,
careful selection of the flame stoichiometry provides low porosity and high corrosion performance.
Ni-based alloys are among the materials of choice in developing high-quality coatings for ambient and high temperature applications that require protection against intense wear and corrosion. The current study aims to develop and characterize NiCrBSi coatings with high wear resistance and improved adhesion to the substrate. Starting with nickel-based feedstock powders, thermally sprayed coatings were initially fabricated. Prior to deposition, the powders were characterized in terms of microstructure, particle size, chemical composition, flowability, and density. For comparison, three types of powders with different chemical compositions and characteristics were deposited onto a 1.7227 tempered steel substrate using oxyacetylene flame spraying, and subsequently, the coatings were inductively remelted. Ball-on-disc sliding wear testing was chosen to investigate the tribological properties of both the as-sprayed and induction-remelted coatings. The results reveal that, in the case of as-sprayed coatings, the main wear mechanisms were abrasive, independent of powder chemical composition, and correlated with intense wear losses due to the poor intersplat cohesion typical of flame-sprayed coatings. The remelting treatment improved the performance of the coatings in terms of wear compared to that of the as-sprayed ones, and the density and lower porosity achieved during the induction post-treatment had a significant positive role in this behavior.
Without proper post-processing (often using flame, furnace, laser remelting, and induction) or reinforcements’ addition, Ni-based flame-sprayed coatings generally manifest moderate adhesion to the substrate, high porosity, unmelted particles, undesirable oxides, or weak wear resistance and mechanical properties. The current research aimed to investigate the addition of ZrO2 as reinforcement to the self-fluxing alloy coatings. Mechanically mixed NiCrBSi-ZrO2 powders were thermally sprayed onto an industrially relevant high-grade steel. After thermal spraying, the samples were differently post-processed with a flame gun and with a vacuum furnace, respectively. Scanning electron microscopy showed a porosity reduction for the vacuum-heat-treated samples compared to that of the flame-post-processed ones. X-ray diffraction measurements showed differences in the main peaks of the patterns for the thermal processed samples compared to the as-sprayed ones, these having a direct influence on the mechanical behavior of the coatings. Although a slight microhardness decrease was observed in the case of vacuum-remelted samples, the overall low porosity and the phase differences helped the coating to perform better during wear-resistance testing, realized using a ball-on-disk arrangement, compared to the as-sprayed reference samples.