Refine
Year of publication
Document Type
- Conference Proceeding (351) (remove)
Keywords
- Bionik (9)
- Akkreditierung (3)
- Gespenstschrecken (3)
- Haftorgan (3)
- Strukturoptimierung (3)
- adhesion (3)
- stick insects (3)
- Competency-Oriented Exams (2)
- E-Learning (2)
- Field measurement (2)
Institute
- Institut für Internetsicherheit (69)
- Westfälisches Institut für Gesundheit (63)
- Informatik und Kommunikation (45)
- Westfälisches Energieinstitut (38)
- Maschinenbau Bocholt (29)
- Wirtschaft und Informationstechnik Bocholt (26)
- Elektrotechnik und angewandte Naturwissenschaften (22)
- Wirtschaftsrecht (8)
- Institut für biologische und chemische Informatik (6)
- Institut für Innovationsforschung und -management (5)
Bachelor/Master-Studiengänge
(1999)
Kurzübersicht der aktuellen Projekte des Westfälischen Energieinstituts.
Auf der Basis eines Wettbewerbs des BMBF von 1997 hat das Konsortium Virtuelle Fachhochschule (VFH) 43 Mio. DM erhalten und 1999 damit begonnen Online-Studiengänge zu entwickeln. Weitere Themenfelder dieses Bundesleitprojektes sind: Struktur und Organisation einer virtuellen Hochschule, Lehr- und Lernformen in Online-Studiengängen, etc. Beteiligt sind 10 Fachhochschulen, 2 Universitäten, sowie diverse Organisationen und Wirtschaftsunternehmen. Im Jahre 2001 startete der Bachelor-Online-Studiengang Medieninformatik (www.oncampus.de). Das Projekt läuft noch bis ins Jahr 2004. Der Autor ist Vizegesamtprojektleiter, Mitglied im Teilvorhaben Struktur und Organisation sowie Entwickler von 3 Lernmodulen zur Physik für das Medieninformatikstudium.
Am Beispiel dieses Großprojektes werden einige Besonderheiten und Erfahrungen zu den Themen: Organisationsformen, Betreuung, Lehrdeputat, Workload, Ergonomie, Evaluation, Akkreditierung und die Entwicklung der Physik-Online-Lernmodule dargestellt.
Intelligenzexplosion
(2016)
This experimental work deals with the preparation and investigation of PEM fuel cell electrodes, which are obtained using Graphene Related Material (GRM) serving as catalyst support material for platinum nanoparticles. The applied GRM belong to the group of carbon nanofibers and exhibits a helical-ribbon structure with dimensions of 50 nm in diameter and an average length up to a few µm. Furthermore, utilized GRM provide a superior graphitisation degree of about 100 %, which leads to both high corrosion resistance and low ohmic resistance. Material stability plays one of the main roles for long term fuel cell operation, whereby a great electrical catalyst contact combined with high specific surface area yields in high fuel cell performances.
Prior to GRM dispersion and deposition onto a gas diffusion layer, the graphene structures are functionalized by oxygen plasma treatment. Through this step, functional oxygen groups are generated onto the GRM outer surface providing an improved hydrophilic behaviour and facilitating the GRM suspension preparation. In addition, the oxygen groups act as anchors for platinum nanoparticles which are subsequently deposited onto the GRM surface through a pulse electrodeposition process.
Membrane electrode assemblies produced with the prepared electrodes are investigated in-situ in a PEM fuel cell test bench.
Die als Bologna-Prozess bezeichnete Umstrukturierung des europäischen Hochschulsystems begann in Deutschland etwa 1999 mit den Strukturvorgaben der KMK
2. Darin wird auch von einem berufsqualifizierenden Profil der Bachelor- und Master-Studiengänge und von weiterbildenden Masterstudiengängen gesprochen. Im Folgenden wird über einige Erfahrungen zu diesen beiden Themenbereichen und das lebensbegleitende Lernen berichtet. Gewonnen wurden diese Erfahrungen vor allem durch die Tätigkeit im Fachbereichstag Informatik, im Bundesleitprojekt Virtuelle Fachhochschule und in der Akkreditierung von neuen Studiengängen an Universitäten und Fachhochschulen.
Ein weiterer Prozess, der die Neugestaltung der Studiengänge begleitet, ist durch den Europäischen Qualifikationsrahmen gegeben.
In seiner letzten Ausprägung werden auch die berufliche Qualifikation und das lebensbegleitende Lernen thematisiert.
In this experimental work we present a novel electrolyzer system for the production of hydrogen and oxygen at high pressure levels without an additional mechanical compressor. Due to its control strategies, the operation conditions for this electrolyzer can be kept optimal for each load situation of the system. Furthermore, the novel system design allows for dynamic long-term operation as well as for easy maintainability. Therefore, the device meets the requirements for prospective power-to-gas applications, especially, in order to store excess energy from renewable sources. A laboratory scale device has been developed and high-pressure operation was validated. We also studied the long-term stability of the system by applying dynamic load cycles with load changes every 30 sec. After 80 h of operation the used membrane electrode assembly (MEA) was investigated by means of SEM, EDX and XRD analysis.
An energy economy with high share of renewable but volatile energy sources is dependent on storage strategies in order to ensure sufficient energy delivery in periods of e.g. low wind and/or low solar radiation. Hydrogen as environmental friendly energy carrier is thought to be an appropriate solution for large scale energy storage. In 2011 the NOW (national organisation for hydrogen in Germany) calculated the demand for hydrogen energy systems as positive (0.8 GW to 5.25 GW) and negative supply for varying power demand (0.68 to 4.3 GW) for the German energy economy in 2025. Due to its dynamic behaviour on load changes polymer electrolyte membrane fuel cells (PEMFC) as well as water electrolyser systems (PEMEL) can play a significant role for large scale hydrogen based storage systems. In this work a novel design concept for modular fuel cell and electrolyser stacks is presented with single cells in pockets surrounded by a hydraulic medium. This hydraulic medium introduces necessary compression forces on the membrane electrode assembly (MEA) of each cell within a stack. Furthermore, ideal stack cooling is achieved by this medium. Due to its modularity and scalability the modular stack design with hydraulic compression meets the requirements for large PEMFC as well as PEMEL units. Small scale prototypes presented in this work illustrate the potential of this design concept.
Im Rahmen der Energiewende ist eine Erweiterung der in das Verbund-netz integrierten Energiespeicher notwendig, um zukünftig die heute gewohnte Versorgungssicherheit trotz eines sehr hohen Anteils volatiler regenerativer Energieerzeugungsanlagen zu ermöglichen. Eine geeignete elektrochemische Methode zur umweltfreundlichen Zwischenspeicherung großer Energiemengen stellt die Wasserelektrolyse mit bedarfsorientierter Rückverstromung dar. Dabei können die dynamischen Einspeise- und Laständerungen im elektrischen Verbundnetz im besonderen Maße von Elektrolyseur- und Brennstoffzellen-systemen auf Basis von Polymer-Elektrolyt-Membranen (PEM) aufgefangen werden.
Bestehende PEM-Systeme sind vor allem in ihrer konstruktiven Zellgröße und ihrer maximalen Leistung bei der Wasserstoffproduktion bzw. der Stromerzeugung stark begrenzt. Vor allem inhomogene Verpressungen großflächiger planarer Zellen in einem klassischen, mechanisch verspannten Stack führen zu hohen Leistungseinbußen. Zudem ergeben sich bei kleinen Stacks aufgrund der geringen Zellspannung ungünstige Wandlungsverhältnisse zwischen Strom und Spannung für eine vor- bzw. nachgeschaltete Leistungselektronik. Ein neuartiges Stackkonzept mit segmentierten Polplatten bietet eine konstruktive Lösung für das Problem größerer aktiver Zellflächen und leistet einen Beitrag zur Entwicklung industriell einsetzbarer Hochdruckelektrolyseure und Brennstoffzellen.
Im Rahmen eines gemeinsamen Forschungsprojekts mit dem Titel „Energieautarke Bohrlochsensorik mittels Brennstoffzellen – GeoFuelCells“ wurde vom Geothermie-Zentrum Bochum und dem Westfälischen Energieinstitut, unterstützt aus dem Förderprogramm Ziel 2 (2007-2013 EFRE) des Landes NRW, ein brennstoffzellenbasiertes Energieversorgungssystem für Bohrloch-Anwendungen entwickelt.
Für einen Energiesektor, der zukünftig im hohen Maße auf erneuerbaren Quellen beruht, sind Energiespeicher unverzichtbar, um die heute gewohnte Versorgungssicherheit auch in Zeiten geringer Einspeisung aus Wasser, PV- und/oder Windkraftanlagen garantieren zu können. Da konventionelle Speichertechnologien wie beispielsweise Pumpspeicherkraftwerke durch fehlende mögliche Standorte in Deutschland nicht weiter ausgebaut werden, sind Alternativen notwendig. Es ist Konsens, hierfür emissionsarme Strategien zu entwickeln, um die gesetzten Ziele zur Reduktion von CO2 Emissionen zu erreichen. Neben Batterien, die vorzugsweise für Kurzzeitspeicher einzusetzen sind, bietet sich Wasserstoff als umweltfreundlicher Sekundärenergieträger an, der in großen Mengen gespeichert und in Brennstoffzellen mit hohem Wirkungsgrad emissionsfrei in elektrische Energie umgewandelt werden kann. Da elementarer Wasserstoff nicht natürlich vorkommt, ist dieser zuvor zu generieren. Überschüsse aus regenerativen Energiequellen können hierfür ideal genutzt werden. In diesem Beitrag wird ein aussichtsreiches Konzept für einen modularen Hochdruckelektrolyseur vorgestellt, welcher erlaubt, Wasserstoff bei einem hohen Ausgangsdruck bereitzustellen. Durch den prinzipiellen Aufbau, ist ein beliebiges Druckniveau am Ausgang nur von der mechanischen Stabilität der verwendeten Bauteile abhängig. Hierdurch ist es möglich, Wasserstoff direkt in einen Druckgasspeicher oder eine Pipeline zu produzieren, ohne einen zusätzlichen Verdichter nutzen zu müssen. Dies resultiert in signifikanten Kosteneinsparungen und verbessert den Systemwirkungsgrad zukünftiger Anlagen entscheidend.
Membrane electrode assemblies (MEA) developed at the Westphalian Energy Institute for polymer electrolyte membrane fuel cells (PEMFC) are high tech systems containing various materials structured in nanoscale, at which electrochemical reactions occur on catalyst nano particle surfaces. For low reactance homogeneous compression of the MEA’s layers is necessary. A novel stack architecture for electrochemical cells, especially PEMFC as well as PEM electrolysers, has been developed according to achieve ideal cell operation conditions. Single cells of such a stack are inserted into flexible slots that are surrounded by hydraulic media. While operation the hydraulic media is pressurised which leads to an even compression and cooling of the stack’s cells. With this stack design it has been possible to construct a test facility for simultaneous characterisation of several MEA samples. As compression and temperature conditions of every single sample are equal, with the novel test system the effect of e.g. different electrode configurations can be investigated. Furthermore, the modular stack design leads to the development of hybrid energy applications combining fuel cells, electrolysers, batteries as well as metal hydride tanks in one system.
For this study gas diffusion electrodes (GDE) with low platinum loading are prepared for the application as anode in polymer electrolyte membrane fuel cell (PEMFC) systems based on hydraulic compression. As catalyst support material, carbon nanofibers (CNF) are investigated because of their high specific surface area and high graphitization degree. The electrode preparation is optimized by an economic and environmental friendly pre-treatment process in oxygen plasma. For GDE manufacture an ink containing oxygen plasma activated CNFs as well as hydrophilic polymer is used. After spray coating of this CNF ink on a graphitic substrate, platinum is deposited using the pulse plating technique. Preliminary results showed a considerable improvement of CNF dispersibility as well as an increased amount and an optimized morphology of the deposited platinum. Morphology and microstructure are observed by scanning electron microscopy as well as transmission electron microscopy. Platinum loading is determined by thermogravimetric analysis to be in the range of 0.01 mg cm-2 to 0.017 mg cm-2. Furthermore, MEAs are prepared from these GDEs and testing is performed in a novel modular fuel cell test stack based on hydraulic compression. Technical information about stack design and functions is given in this work.
This work deals with the preparation and investigation of PEM fuel cell electrodes, which are obtained using graphene related material (GRM) serving as catalyst support for platinum nanoparticles. Applied GRM are used for the preparation of suspensions in four distinct mixing ratios. Two sorts of GRM have been investigated: carbon nanofibers (CNF) and graphene oxide (GO). Utilized CNFs provide a superior graphitization degree of about 100%, which leads to both high corrosion resistance and low ohmic resistance in PEM fuel cells.
For electrode preparation a GRM containing layer serving as catalyst support is applied onto a gas diffusion layer (GDL). Prior to GRM suspension and deposition onto a GDL, the graphene structures are functionalized by plasma treatment. Due to this step, an improved hydrophilic behavior for facilitating suspension preparation is achieved. In addition, a subsequent platinum nanoparticle deposition by pulsed electrodeposition process is optimized.
This experimental work deals with the preparation and investigation of PEM fuel cell electrodes, which are obtained using Graphene Related Material (GRM) serving as catalyst support material for platinum nanoparticles. The applied GRM belong to the group of carbon nanofibers and exhibits a helical-ribbon structure with dimensions of 50 nm in diameter and an average length up to a few µm. Furthermore, utilized GRM provide a superior graphitisation degree of about 100 %, which leads to both high corrosion resistance and low ohmic resistance. Material stability plays one of the main roles for long term fuel cell operation, whereby a great electrical catalyst contact combined with high specific surface area yields in high fuel cell performances.
Prior to GRM dispersion and deposition onto a gas diffusion layer, the graphene structures are functionalized by oxygen plasma treatment. Through this step, functional oxygen groups are generated onto the GRM outer surface providing an improved hydrophilic behaviour and facilitating the GRM suspension preparation. In addition, the oxygen groups act as anchors for platinum nanoparticles which are subsequently deposited onto the GRM surface through a pulse electrodeposition process.
Membrane electrode assemblies produced with the prepared electrodes are investigated in-situ in a PEM fuel cell test bench.
In polymer electrolyte membrane fuel cells (PEMFC) noble metal nano particles are deposited on graphitic supports serving as electrocatalysts for devices with high power density. In this study anodes are analysed with low platinum loading of about 0.1 mg cm-2. These electrodes are prepared by carbon nano fibres (CNF) decorated with platinum nano particles. For electrode manufacturing two sorts of fibres, which are produced in an industrial scale, are used with different graphitisation degree and surface area. CNF layers are applied on commercially available graphitic substrate by spray coating which leads to a porous structure with high surface area. Subsequently, platinum deposition is achieved by pulsed electroplating for an improved platinum utilisation in PEMFC electrodes. Spray coating and platinum deposition are assisted by a previous oxygen plasma activation process. Prepared anode material is characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectroscopy (XRD), X-ray fluorescence spectroscopy (XRF) and thermogravimetry (TGA). Electrochemical analyses (cyclic voltammetry and corrosion test) are carried out in 0.5 M sulphuric acid. The effect of graphitisation degree of carbon nano fibres on the performance of prepared electrodes is investigated in-situ in a PEM fuel cell test bench.
Platinum is one of the most effective electro catalysts for PEMFCs (proton exchange membrane fuel cells), but because of its prohibitive price, the use of this metal in industrial purposes is limited. As a consequence, during last years, several materials have been investigated, in order to obtain an efficient catalyst for both ORR (oxygen reduction reaction) and HOR (hydrogen oxidation reaction), which can replace the expensive platinum but preserving the same properties: high electrical conductivity, structural stability and good corrosion resistance. Moreover, one of the most important parameters for catalyst materials is the electrochemical surface area (real surface area), which has a strong influence on the reaction rate and also on the current density.
CNFs (carbon nanofibers) are considered to be a promising catalyst support material due to their unique characteristics, excellent mechanical, electrical and structural properties, high surface area and nevertheless, good interaction with platinum particles.
The possibility of preparing CNFs decorated with platinum by electrochemical methods was tested, using a hexachloroplatinic solution bath. The experiments were carried out with the aid of a Potentiostat/Galvanostat MMate 510, in a three – electrode cell.
The aim of the present work was to determine the electrochemical surface area of the CNFs – Pt catalysts, using an electrochemical method. The obtained results correlate very well with the particles size and distribution of platinum, analyzed by SEM (scanning electron microscopy) respectively with the quantity of deposited platinum determined by TG (thermo gravimetrical analyses). Cyclic voltammetry is a suitable method for estimation of the real surface area for catalyst particles.
In state of the art polymer electrolyte membrane fuel cells (PEMFC) rare and expensive platinum group metals (PGM) are used as catalyst material. Reduction of PGM in PEMFC electrodes is strongly required to reach cost targets for this technology. An optimal catalyst utilisation is achieved in the case of nano-structured particles supported on carbon material with a large specific surface area. In this study, graphitic material in form of carbon nanofibres (CNFs) is decorated with platinum (Pt) particles serving as catalyst material for PEMFC electrodes with low Pt loading. For electrode preparation CNFs have been previously activated by means of radio frequency induced oxygen plasma. This kind of treatment results in formation of functional groups on the CNF’s surface which directly influences the characteristics of subsequent Pt particle deposition. Different plasma parameters (plasma power, gas flow or exposure time) have to be set in order to achieve formation of oxygen containing functional groups (hydroxylic, carboxylic or carbonylic) on the CNF’s surface. In the frame of this experimental work, electrodes are investigated in respect of optimal morphology, microstructure as well as electrochemical properties. Therefore, samples were characterised by means of scanning electron microscopy combined with energy dispersive X-ray analysis, transmission electron microscopy, thermogravimetry, X-ray diffraction, X-ray fluorescence as well as polarisation measurements.
To further increase platinum utilisation in PEM fuel cells CNFs are investigated as catalyst support material due to the CNF’s high specific surface area. Furthermore, CNFs provide suitable properties concerning corrosion resistance as well as electrical conductivity in contrast to conventional carbon supports.
This work presents the results of an electrode preparation procedure based on O2 plasma activated CNFs. The plasma treatment leads to CNF dispersibility in alcohol/water for a spray coating process. Furthermore, O2 plasma activation enhances metal deposition on the CNF’s surface. Pulse plating procedure as well as wet chemical metal synthesis have been used for particle deposition. For pulse plating a potentiostat/galvanostat type MMates 510 AC from Materials Mates, Italy has been used. Electrode morphology has been determined in SEM type XL 30 ESEM from Philips, The Netherlands.
Um die Wasserstofftechnik in Zukunft wirtschaftlich und damit kommerziell am Markt verfügbar werden zu lassen, sind heute noch immer große Forschungs- und Entwicklungsanstrengungen notwendig. Dabei erfordert die Entwicklung von optimierten Komponenten wie beispielsweise der Membran-Elektroden-Einheit (MEA – engl. Membrane Electrode Assembly) für Brennstoffzellen sowie Elektrolyseure reproduzierbare und homogene Prüfbedingungen. Für diesen Zweck ist ein Prüfsystem auf Basis eines von der Westfälischen Hochschule (WHS) patentierten modularen Stackkonzepts mit hydraulischer Verpressung entworfen und realisiert worden. Mit dem hier vorgestellten System ist es möglich, auf Einzelzellenbasis mehrere Proben zum gleichen Zeitpunkt unter identischen Umgebungsbedingungen auf ihre Charakteristik hin zu untersuchen.
Since the 1980’s, against the backdrop of global warming and the decline of conventional energy resources, low emission and renewable energy systems have gotten into the focus of politics as well as research and development. In order to decrease the emission of greenhouse gases Germany intents to generate 80% of its electrical energy from renewable and low emission sources by 2050. For low emission electricity generation hydrogen operated fuel cells are a potential solution. However, although fuel cell technology has been well known since the 19th century cost effective materials are needed to achieve a breakthrough in the market.
Proton Exchange Membrane Fuel Cells with Carbon Nanotubes as Electrode Material
At the Westphalian Energy Institute of the Wesphalian University of Applied Sciences one main focus is on the research of proton exchange membrane fuel cells (PEMFC). PEMFC membrane electrode assemblies (MEA) consist of a polymer membrane with electrolytic properties covered on both sides by a catalyst layer (CL) as well as a porous and electrical conductive gas diffusion layer (GDL).
For PEMFC carbon nanotubes (CNT) have ideal properties as electrode material concerning electrical conductivity, oxidation resistance and media transport. CNTs are suitable for the use as catalyst support material within the CL due to their large surface in comparison to conventional carbon supports. Furthermore, oxygen plasma treated CNTs show electrochemical activity referred to hydrogen adsorption and desorption, which has been shown by cyclic voltammetry in 0.5 M sulfuric acid solution. According to the PEMFCs anode a GDL coated with oxygen plasma activated CNTs has promising properties to significantly reduce catalyst content (e.g. platinum) of the anodic CL.
The membrane electrode assemblies (MEA) for polymer electrolyte membrane fuel cells (PEMFC) developed at the Westphalian Energy Institute are based on oxygen plasma activated carbon nanotubes (CNT) doped with platinum particles. For electrode preparation an ink is used containing the activated CNTs as well as hydrophobic and hydrophilic material in solved form. After this ink is sprayed onto a graphitic substrate platinum particles are deposited by pulse plating method, where the plasma activation enhances CNT dispersibility as well as platinum deposition. This materials mixture is structured in nanoscale with the aim to increase the catalyst particles’ specific surface. For low reactance at operation, homogeneous compression of the MEA’s layers is necessary within a PEMFC. A novel stack architecture for electrochemical cells, especially PEMFC as well as PEM electrolysers, has been developed in order to achieve ideal cell operation conditions. Single cells of such a stack are inserted into flexible slots that are surrounded by a hydraulic medium which is pressurised during operation in order to achieve an even compression and cooling of the stack’s cells. With this stack design it has been possible to construct a test facility for simultaneous characterisation of several MEA samples. As compression and temperature conditions of every single sample are the same, the effects of e.g. different electrode configurations can be investigated with the novel test system.
Adhesive organs like arolia of insects allow these animals to climb on different substrates by creating high adhesion forces. According to the Dahlquist criterion, arolia must be very soft exhibiting an effective Young's modulus of below 100 kPa to adhere well to different substrates. In previous studies the effective Young´s moduli of adhesive organs were determined using indentation tests yielding their structure to be very soft indeed. However, arolia show a layered structure, thus the values measured by indentation tests comprise the effective Young´s moduli of the whole organs. In this study, a new approach is illustrated to measure the Young´s modulus of the outermost layer of the arolium, i.e. of the epicuticle, of the stick insect Carausius morosus by tensile testing. Due to the inner fibrous structure of the arolium tensile tests allow the characterisation of the overlying epicuticle.
Adhesive organs enable insects to reversibly adhere to substrates even during rapid locomotion. In this process a very fast but reliable change of adhesion and detachment is realised. The stick insect Carausius morosus detaches its adhesive organs by peeling them off the substrate, meaning little areas of the adhesive organs are detached one after another. For such a detachment mechanism low pulling forces are needed. A detachment mechanism as peeling seems also for artificial adhesion devices to be the easiest and the most effortless mechanism for detachment. However, artificial adhesion devices mostly exhibit a solid backing layer preventing effortless peeling. To lift up and detach a small area at the corner of an adhesion device the backing layer has to be tilted, resulting in a deformation of the whole adhesion device, which requires high forces. Subdividing the backing layer into small subunits allows a detachment of a small area at the corner of the adhesion device without deforming the rest of the adhesion device. Thereby, less force is needed to initiate and to complete detachment. To realise an easy detachment of artificial adhesion devices we constructed a holder, which gradually detaches an adhesion device from two sides off the substrate. During normal loading the subunits of the holder interlock with each other so that the pulling force is equally distributed over the whole contact area of the adhesion device ensuring maximal adhesion force. In addition, the holder can be used to increase adhesion during application of the adhesion device. When brought into contact with the substrate with lifted sides, which are lowered subsequently, air trapping is prevented and hence the area of contact can be maximised.
Sensortechnik
(1999)
Many fluids transported by pipelines are in some sense hazardous. It is therefore often necessary to install leak detection (and locating) systems (LDS), especially due to legal regulations like the "Code for Federal Regulations (CFR) Title 49 Part 195", API 1130 2nd Ed., both for the USA, or the "Technische Regeln für Fernleitungen" (TRFL) (Technical Rules for Pipelines) in Germany. This paper gives a survey of methodologies, methods and techniques for leak detection and locating. The survey starts with some remarks concerning (legal) regulations both for the USA and for Germany. Some few words about externally based systems (due to API 1130 2nd Ed.) follow next. A significant part of the paper deals with internally based systems (also due to API 1130 2nd Ed.) like balancing systems (line balance, volume balance, compensated mass balance etc.), Real Time Transient Model LDS (RTTM-LDS), pressure/flow monitoring and statistical analysis LDS. Different methods for leak locating (gradient intersection method, wave propagation analysis etc.) will also be shown. The presentation of an Extended RTTM approach (E-RTTM) combining advantages of conventional RTTM LDS and statistical analysis follows next, together with the demonstration of applicability by means of two examples, a liquid multi-batch pipeline, and a gas pipeline. Sketching future work and the conclusion conclude the survey.
Technik des Online-Studiums
(2002)
Dieser Bericht beschreibt in Kurzform das Projekt, dessen Ziel es ist, Online-Studiengänge zu entwickeln. Weiterhin werden die Besonderheiten bei der Durchführung von Online-Studiengängen und die damit verbundenen Schwierigkeiten aufgezeigt. An einem Beispiel kann man erkennen, wie die didaktische und multimediale Umsetzung der einzelnen Lernmodule realisiert wurde. Eine ausführliche Abhandlung kann man im Internet nachlesen: http://194.94.127.15/Lehre/infophysik/IP-WBT-Demo/infophysik.html