Refine
Document Type
- Conference Proceeding (2)
- Article (1)
Keywords
- Electrodeposition (2)
- AEM-Electrolysis (1)
- Catalysis (1)
- Gas Diffusion Electrode (1)
- Ni-Mo alloy Catalyst (1)
- ORR OER (1)
The present paper presents one- and two-step approaches for electrochemical Pt and Ir deposition on a porous Ti-substrate to obtain a bifunctional oxygen electrode. Surface pre-treatment of the fiber-based Ti-substrate with oxalic acid provides an alternative to plasma treatment for partially stripping TiO2 from the electrode surface and roughening the topography. Electrochemical catalyst deposition performed directly onto the pretreated Ti-substrates bypasses unnecessary preparation and processing of catalyst support structures. A single Pt constant potential deposition (CPD), directly followed by pulsed electrodeposition (PED), created nanosized noble agglomerates. Subsequently, Ir was deposited via PED onto the Pt sub-structure to obtain a successively deposited PtIr catalyst layer. For the co-deposition of PtIr, a binary PtIr-alloy electrolyte was used applying PED. Micrographically, areal micro- and nano-scaled Pt sub-structure were observed, supplemented by homogenously distributed, nanosized Ir agglomerates for the successive PtIr deposition. In contrast, the PtIr co-deposition led to spherical, nanosized PtIr agglomerates. The electrochemical ORR and OER activity showed increased hydrogen desorption peaks for the Pt-deposited substrate, as well as broadening and flattening of the hydrogen desorption peaks for PtIr deposited substrates. The anodic kinetic parameters for the prepared electrodes were found to be higher than those of a polished Ir-disc.
Various aqueous citrate electrolyte compositions for the Ni-Mo electrodeposition are explored in order to deposit Ni-Mo alloys with Mo-content ranging from 40 wt% to 65 wt% to find an alloy composition with superior catalytic activity towards the hydrogen evolution reaction (HER). The depositions were performed on copper substrates mounted onto a rotating disc electrode (RDE) and were investigated via scanning electron microscopy (SEM), X-ray fluorescence (XRF) and X-ray diffraction (XRD) methods as well as linear sweep voltammetry (LSV) and impedance spectroscopy. Kinetic parameters were calculated via Tafel analysis. Partial deposition current densities and current efficiencies were determined by correlating XRF measurements with gravimetric results. The variation of the electrolyte composition and deposition parameters enabled the deposition of alloys with Mo-content over the range of 40-65 wt%. An increase in Mo-content in deposited alloys was recorded with an increase in rotation speed of the RDE. Current efficiency of the deposition was in the magnitude of <1%, which is characteristic for the deposition of alloys with high Mo-content. The calculated kinetic parameters were used to determine the Mo-content with the highest catalytic activity for use in the HER.