Refine
Year of publication
- 2016 (7) (remove)
Document Type
- Article (4)
- Conference Proceeding (3)
Keywords
- carbon nanofibers, platinum electrodeposition, ele ctrochemical surface area (1)
- Hydraulic compression, Carbon Nano Fibers, PEM Fuel Cells, Catalyst utilization (1)
- PEM fuel cell electrocatalysts, Carbon nanofibers, Oxygen plasma activation, Pulsed electroplating. (1)
- carbon nanofibers, platinum electrodeposition, electrocatalysts (1)
This experimental work deals with the preparation and investigation of PEM fuel cell electrodes, which are obtained using Graphene Related Material (GRM) serving as catalyst support material for platinum nanoparticles. The applied GRM belong to the group of carbon nanofibers and exhibits a helical-ribbon structure with dimensions of 50 nm in diameter and an average length up to a few µm. Furthermore, utilized GRM provide a superior graphitisation degree of about 100 %, which leads to both high corrosion resistance and low ohmic resistance. Material stability plays one of the main roles for long term fuel cell operation, whereby a great electrical catalyst contact combined with high specific surface area yields in high fuel cell performances.
Prior to GRM dispersion and deposition onto a gas diffusion layer, the graphene structures are functionalized by oxygen plasma treatment. Through this step, functional oxygen groups are generated onto the GRM outer surface providing an improved hydrophilic behaviour and facilitating the GRM suspension preparation. In addition, the oxygen groups act as anchors for platinum nanoparticles which are subsequently deposited onto the GRM surface through a pulse electrodeposition process.
Membrane electrode assemblies produced with the prepared electrodes are investigated in-situ in a PEM fuel cell test bench.
Carbon Nanofibers (CNF) are considered to be a promising catalyst support material due to their unique characteristics, excellent mechanical, electrical and structural properties, high surface area and nevertheless, good interaction with metallic catalyst particles. The possibility of preparing CNF decorated with platinum by an electrochemical method was tested, using a hexachloroplatinic bath solution. The experiments were carried out with the aid of a Potentiostat/Galvanostat Ivium Technologies Vertex, in a three – electrode cell. The aim of the present work was to determine the electrochemical surface area (ECSA) of the CNF-Pt catalysts in relation to the functionalization treatment of fibers, using an electrochemical method. ECSA for different functionalized CNF-Pt catalysts was determined by cyclic voltammetry in 0.5 M H2SO4 solution. The highest active surface of platinum was obtained for the samples with CNF functionalized by plasma treatment using 80 W for 1800 s. The obtained results correlate very well with the particles size and distribution of platinum, revealed by scanning electron microscopy (SEM) and the quantity of deposited platinum determined by thermo gravimetrical analysis (TGA) respectively. Cyclic voltammetry (CV) has been proven to be a suitable method for estimation of the ECSA of the electrocatalysts.
This work deals with the preparation and investigation of PEM fuel cell electrodes, which are obtained using graphene related material (GRM) serving as catalyst support for platinum nanoparticles. Applied GRM are used for the preparation of suspensions in four distinct mixing ratios. Two sorts of GRM have been investigated: carbon nanofibers (CNF) and graphene oxide (GO). Utilized CNFs provide a superior graphitization degree of about 100%, which leads to both high corrosion resistance and low ohmic resistance in PEM fuel cells.
For electrode preparation a GRM containing layer serving as catalyst support is applied onto a gas diffusion layer (GDL). Prior to GRM suspension and deposition onto a GDL, the graphene structures are functionalized by plasma treatment. Due to this step, an improved hydrophilic behavior for facilitating suspension preparation is achieved. In addition, a subsequent platinum nanoparticle deposition by pulsed electrodeposition process is optimized.
In the polymer electrolyte membrane fuel cells (PEMFC) state of the art, rare and expensive platinum group metals (PGM) or PGM alloys are used as catalyst material. Reduction of PGMs in PEMFC electrodes is strongly required to reach cost targets for this technology. An optimal catalyst utilization is achieved in case of nano-structured particles supported on carbon material with a large specific surface area. In this study, graphitic material, in form of carbon nanofibers (CNF), is decorated with Pt particles, serving as catalyst material for PEMFC electrodes with low Pt loading. As a novelty, the effect of oxygen plasma treatment of CNFs previously to platinum particle deposition has been studied. Electrodes are investigated in respect of the optimal morphology, microstructure as well as electrochemical properties. Therefore, samples are characterized by means of scanning electron microscopy combined with energy dispersive X-ray analysis, transmission electron microscopy, thermogravimetry, X-ray diffraction as well as X-ray fluorescence analysis. In order to determine the electrochemical active surface area of catalyst particles, cyclic voltammetry has been performed in 0.5 M sulphuric acid. Selected samples have been investigated in a PEMFC test bench according to their polarization behavior.
In this experimental work polymer electrolyte membrane fuel cell (PEMFC) electrodes are analysed, which are prepared by the use of two sorts of carbon nano fibres (CNF) serving as support material for platinum nano particles. Those CNFs, which are heat treated subsequently to their production, have a higher graphitisation degree than fibres as produced. The improved graphitisation degree leads to higher electrical conductivity, which is favourably for the use in PEMFC electrodes. Samples have been analysed, in order to determine graphitisation degree, electrical conductivity, as well as morphology and loading of the prepared electro catalyst. Membrane electrode assemblies manufactured from prepared electrodes are analysed in-situ in a PEM fuel cell test environment. It has been determined that power output for samples containing CNFs with higher graphitisation degree is increased by about 13.5%.
Platinum nanoparticles electrodeposition on carbon nanofibers (CNF) support has been performed with the purpose to obtain electrodes that can be further used especially in a polymer electrolyte membrane fuel cell (PEMFC). A pretreatment of CNF is required in order to enhance the surface energy, which simultaneously improves handling and wettability as well as interaction with the platinum cations. This step was performed using oxygen plasma functionalization. To produce CNF supported Pt catalysts, an electrochemical method was applied and the deposition parameters were adjusted to obtain nanosized platinum particles with a good distribution onto the graphitic surface. The morphology and structure of the obtained particles were investigated by scanning electron microscopy combined with energy dispersive X-Ray spectroscopy. The amount of deposited platinum was established using thermogravimetrical measurements. Cyclic voltammetry performed in 0.5 M H2SO4 solution was applied for determining the electrochemical surface area (ECSA) of the obtained electrodes.The functionalization degree of the CNF outer surface has a strong influence on the structure, distribution and amount of platinum particles. Moreover, the current densities, which were set for the deposition process influenced not only the particles size but also the platinum amount. Applying an oxygen plasma treatment of 80 W for 1800 s, the necessary degree of surface functionalization is achieved in order to deposit the catalyst particles. The best electrodes were prepared using a current density of 50 mA cm-2 during the deposition process that leads to a homogenous platinum distribution with particles size under 80 nm and ECSA over 6 cm2
For this study gas diffusion electrodes (GDE) with low platinum loading are prepared for the application as anode in polymer electrolyte membrane fuel cell (PEMFC) systems based on hydraulic compression. As catalyst support material, carbon nanofibers (CNF) are investigated because of their high specific surface area and high graphitization degree. The electrode preparation is optimized by an economic and environmental friendly pre-treatment process in oxygen plasma. For GDE manufacture an ink containing oxygen plasma activated CNFs as well as hydrophilic polymer is used. After spray coating of this CNF ink on a graphitic substrate, platinum is deposited using the pulse plating technique. Preliminary results showed a considerable improvement of CNF dispersibility as well as an increased amount and an optimized morphology of the deposited platinum. Morphology and microstructure are observed by scanning electron microscopy as well as transmission electron microscopy. Platinum loading is determined by thermogravimetric analysis to be in the range of 0.01 mg cm-2 to 0.017 mg cm-2. Furthermore, MEAs are prepared from these GDEs and testing is performed in a novel modular fuel cell test stack based on hydraulic compression. Technical information about stack design and functions is given in this work.